CS107, Lecture 15

Introduction to Assembly

Reading: B&O 3.1-3.4

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: 2 Creative Commons Attribution 2.5 License. All rights reserved.

‘u l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)




CS107 Topic 5

How does a computer interpret and execute C programs?

Why is answering this question important?

* Learning how our code is really translated and executed helps us write better
code

* We can learn how to reverse engineer and exploit programs at the assembly
level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.




Learning Goals

* Learn what assembly language is and why it is important
* Become familiar with the format of human-readable assembly and x86
* Learn the mov instruction and how data moves around at the assembly level



Lecture Plan

* Overview: GCC and Assembly
* Demo: Looking at an executable
* Registers and The Assembly Level of Abstraction

* The mov Instruction

cp -r /afs/ir/class/csl107/lecture-code/lectl5 .




Lecture Plan

* Overview: GCC and Assembly
* Demo: Looking at an executable
* Registers and The Assembly Level of Abstraction

* The mov Instruction

cp -r /afs/ir/class/csl107/lecture-code/lectl5 .




* GCC is the compiler that converts your human-readable code into machine-
readable instructions.

* C, and other languages, are high-level abstractions we use to write code
efficiently. But computers don’t really understand things like data structures,
variable types, etc. Compilers are the translator!

* Pure machine code is 1s and Os — everything is bits, even your programs! But
we can read it in a human-readable form called assembly. (Engineers used to

write code in assembly before C).

* There may be multiple assembly instructions needed to encode a single C
instruction.

* We’re going to go behind the curtain to see what the assembly code for our
programs looks like.



Why are we reading assembly?

11 I
[
| Ccode 1] Assembly Machine code | |
I || code I

Programmer- gcc (compiler+assembler)
generated generated

Main goal: Information retrieval
* We will not be writing assembly! (that’s the compiler’s job)
* Rather, we want to translate the assembly back into our C code.

* Knowing how our C code is converted into machine instructions gives us
insight into how to write more efficient, cleaner code.



Lecture Plan

* Overview: GCC and Assembly
* Demo: Looking at an executable
* Registers and The Assembly Level of Abstraction

* The mov Instruction

cp -r /afs/ir/class/csl107/lecture-code/lectl5 .




Demo: Looking at an
Executable (objdump -d)




Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int 1 = @; 1 < nelems; i++) {
sum += arr[i];
}

return sum;

¥

What does this look like in assembly?

10



Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int 1 = @; 1 < nelems; i++) {
sum += arr[i];

}
return sum;
} make
objdump -d sum
0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0, %eax
40113b: ba 00 00 00 00 mov $0x0, %edx
401140: 39 0 cmp %esi,neax
401142 7d @b jge 40114f <sum_array+0x19>
401144 48 63 c8 movslq %eax,%rcx
401147 : 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 co0 01 add $0x1, %eax
40114d: eb f1l jmp 401140 <sum_array+0xa>
40114f: 89 do mov %edx, %eax

401151: c3 retq 11



Our First Assembly

0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0, %eax

40113b: ba 00 00 00 00 mov $0x0, %edx

401140: 39 fo cmp %esi,%eax

401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,srcx

401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 cO 01 add $0x1, %eax

40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 do mov %edXx, seax

401151: c3 retq

12



Our First Assembly

0000000000401136 <sum_array>;

\—'—l

This is the name of the function (same
as C) and the memory address where
the code for this function starts.

13



Our First Assembly

0000000000401136 <sum_array>:
401136:
40113b:

401140:
401142 These are the memory addresses where

401144 each of the instructions live. Sequential

401147: . . e
401143 Instructions are sequentlal IN Memory.

40114d:
40114f:
401151:

14



Our First Assembly

0000000000401136 <sum_array>:

This is the assembly code:
“human-readable” versions of
each machine code instruction.

mov
mov
cmp
jge
movslg
add
add
jmp
mov
etq

$0x0, %eax

$0x0, %edx

%esi,%eax

40114f <sum_array+0x19>
%eax, %hrcx
(%rdi,%rcx,4),%edx
$0x1, %eax

401140 <sum_array+0xa>
%edx, %eax

15



Our First Assembly

0000000000401136 <sum_array>:
b8 00 00 00 00

ba 00 00 00 00 This is the machine code: raw

33 ‘;S hexadecimal instructions,

48 63 c8 representing binary as read by the

@3 14 8f computer. Different instructions may
23 ;i o1 be different byte lengths.

89 do

16



Our First Assembly

0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0, %eax

40113b: ba 00 00 00 00 mov $0x0, %edx

401140: 39 fo cmp %esi,%eax

401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,srcx

401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 cO 01 add $0x1, %eax

40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 do mov %edXx, seax

401151: c3 retq

17



Our First Assembly

0000000000401136 <sum_array>:

40114a: 83 co 01 add $0x1, %eax

Each instruction has an
operation name (“opcode”).

18



Our First Assembly

0000000000401136 <sum_array>:

40114a: 83 co 01 add eexl,%eax’

Each instruction can also have
arguments (“operands”).

19



Our First Assembly

0000000000401136 <sum_array>:

40114a: 83 co 01 add $0x1, %eax

S[number] means a constant value,
or “immediate” (e.g. 1 here).

20



Our First Assembly

0000000000401136 <sum_array>:

40114a: 83 co 01 add $0x1, %eax

%[name] means a register, a storage
location on the CPU (e.g. edx here).

21



¥ Keep a resource guide handy ¥

e https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf
e CS107 x86 Guide: https://cs107.stanford.edu/guide/x86-64.html
e B&O book:

e Canvas -> Files
-> Bryant_OHallaron_ch3.1-3.8.pdf

* It’s like learning how to read (not speak) a new language! (again!)

22


https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf
https://cs107.stanford.edu/guide/x86-64.html

Lecture Plan

* Overview: GCC and Assembly
* Demo: Looking at an executable
* Registers and The Assembly Level of Abstraction

* The mov instruction

cp -r /afs/ir/class/csl107/lecture-code/lectl5 .

23



Assembly Abstraction

e C abstracts away the low-level details of machine code. It lets us work using
variables, variable types, and other higher-level abstractions.

* C and other languages let us write code that works on most machines.
* Assembly code is just bytes! No variable types, no type checking, etc.
* Assembly/machine code is processor-specific.

* What is the level of abstraction for assembly code?

24



%rax

25



|

%rax

|
|
|
|

%rbx

|
|
|
|

%rcx

|
|
|
|

%rdx

Registers

[

%rsi

%rdi

%rbp

Y%rsp

|
|

%Tr8

%Tr9

%Tr10

%r11

%Tr12

%Tr13

%Tr14

%Tr15

26



What is a register?

A register is a fast read/write memory
slot right on the CPU that can hold
variable values.

Registers are located in the CPU; they
are separate from main memory.




Registers

A register is a 64-bit space inside the processor.
* There are 16 registers available, each with a unigue name.

e Registers are like “scratch paper” for the processor. Data being calculated or

manipulated is moved to registers first. Operations are performed on
registers.

* Registers also hold parameters and return values for functions.
* Registers are extremely fast memory!

* Processor instructions consist mostly of moving data into/out of registers and
performing arithmetic on them. This is the level of logic your program must be
in to execute!

28



Computer architecture

CPU
registers accessed [ Registerfile 7
by name
. . PC
ALU is main ST 655
workhorse of CPU |\ i) %m bus Memolry bu ~ memory needed
e , | | [ ] for program
A/ H H] \ ” )
Bus interface I b r|i/c'ci)g = m';n;'gry e b execution
| hellocode | (stack, heap, etc.)
/ accessed by address
I/O bus ] D D _
Expansion slots for
_ other devices such
USB ' Graphics Disk as network adapters
controller adapter controller
NSRRI Ry r— ’ hello executable  disk/server stores program

Disk | storedondisk  when not executing

———

29



Machine-Level Code

Assembly instructions manipulate these registers. For example:
* One instruction adds two numbers in registers

* One instruction transfers data from a register to memory

* One instruction transfers data from memory to a register

30



GCC And Assembly

* GCC compiles your program — it lays out memory on the stack and heap and
generates assembly instructions to access and do calculations on those

memory locations.
* Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

1) Copy x into register 1

1nt sum = X + y; 2) Copyy into register 2

3) Add register 2 to register 1
4) Write register 1 to memory for sum

31



Instruction set architecture (ISA)

We are going to learn the x86-64 instruction set
architecture (used by Intel and AMD processors).

* There are many other instruction sets: ARM, MIPS, etc.

* An ISA is a contract between program/compiler and
hardware:
» Defines operations that the processor (CPU) can execute
e Data read/write/transfer operations
e Control mechanisms

* Intel originally designed their instruction set in 1978.

e Legacy support is a huge issue for x86-64

* Originally 16-bit processor, then 32 bit, now 64 bit.
These design choices dictated the register sizes
(and even register/instruction names).

Application program

Compiler OS

CPU design

Circuit design

Chip layout

32



Aside: 32-to-64-bit Transition

\ bit J| bit |

e Early 2000s: most computers were 32-bit. This means that pointers were 4
bytes (32 bits).

* 32-bit pointers store a memory address from 0 to 232-1, equaling 232 bytes of
addressable memory. This equals 4 Gigabytes, meaning that 32-bit
computers could have at most 4GB of memory (RAM)!

* Because of this, computers transitioned to 64-bit. This means that datatypes
were enlarged; pointers in programs were now 64 bits.

* 64-bit pointers store a memory address from 0 to 2°4-1, equaling 2% bytes of
addressable memory. This equals 16 Exabytes, meaning that 64-bit
computers could have at most 1024*1024*1024*16 GB of memory (RAM)! 33



Lecture Plan

* Overview: GCC and Assembly
* Demo: Looking at an executable
* Registers and The Assembly Level of Abstraction

* The mov Instruction

cp -r /afs/ir/class/csl107/lecture-code/lectl5 .

34



The mov instruction copies bytes from one place to another;

it is like the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:

* Immediate (constant value, like a number) (only src) $9X194
* Register %rbx

Direct address @XGG@SC@

* Memory Location
(at most one of src, dst)

35



Operand Forms: Immediate

mov $0x104,

I

Copy the value
0x104 into some
destination.

36



Operand Forms: Registers

Copy the value in
register %rbx into

/ some destination.

mov %rbx,

mov , 6rbXx

\ Copy the value

from some source
into register %rbx.

37




Operand Forms: Absolute Addresses

Copy the value at
address 0x104 into

/ some destination.

mov 0x1604,

mov ,0x1604

\ Copy the value

from some source

into the memory at
address 0x104. s



Practice #1: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value 5 is stored at address 0x42, and the value 8

is stored in %rbx.

1. mov  $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55

39



Operand Forms: Indirect

Copy the value at the
address stored in register
/ %rbx into some destination.

mov (%rbx),
mov , (%rbx)

Copy the value from some source
into the memory at the address
stored in register %rbx. 40



Operand Forms: Base + Displacement

Copy the value at the
address (0x10 plus what is
stored in register %rax) into

some destination.

/

mov Ox10(%rax),
mov ,0x10(%rax)

Copy the value from some source
into the memory at the address (0x10
plus what is stored in register %rax).s:




Operand Forms: Indexed

Copy the value at the address which is
(the sum of the values in registers %rax
and %rdx) into some destination.

mov (%rax,srdx),
mov , (%rax,%rdx)

Copy the value from some source into the
memory at the address which is (the sum of
the values in registers %rax and %rdx).



Operand Forms: Indexed

Copy the value at the address which is (the
sum of 0x10 plus the values in registers
Y%rax and %rdx) into some destination.

mov Ox10(%rax,%rdx),
mov ,0x10(%rax,%rdx)

Copy the value from some source into the
memory at the address which is (the sum of 0x10
plus the values in registers %rax and %rdx). 4




Practice #2: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value Ox11 is stored at address Ox10C, OxAB is
stored at address 0x104, 0x100 is stored in register %rax and 0x3 is stored in

%rdx.

1. mov $0x42, (%rax)

to join.

For #3, respond with your thoughts on PollEv:
pollev.com/cs107 or text CS107 to 22333 once

2. mov 4(%rax),%srcx
3. mov  9(%rax,%srdx),%rcx

/

Imm(r,, r;)isequivalenttoaddress Imm + R

[r,] + R[r;]

/ N

Displacement: positive or
negative constant (if missing, = 0)

Base: register

(if missing, = 0)

]

Index: register

(if missing, = 0)




Recap

* Overview: GCC and Assembly Lecture 15 takeaway:
* Demo: Looking at an executable Assembly is the human-
* Registers and The Assembly Level of readable version of the form

Abstraction our programs are ultimately

executed in by the processor.
The compiler translates
source code to machine
code. The most common
Next time: diving deeper into assembly ~ assembly instruction is mov
to move data around.

* The mov instruction

45



Extra Practice



1. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x =
int *ptr = malloc(..);

22 = 2

—_— —_— —_— _)

mov %ecXx, (%rax)

<val of ptr> (Pedantic: You should subin /% &)
<x> and <ptr> with actual s
47

% ecx % rax values, like 4 and 0x7fff80)



1. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x =
int *ptr = malloc(..);

PP = 2?7 ; *ptr = Xx;

—_— —_— —_— _)

mov %ecXx, (%rax)

%ecx %rax
48



