
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 15
Introduction to Assembly

Reading: B&O 3.1-3.4

😷 masks recommended

2

CS107 Topic 5
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better

code
• We can learn how to reverse engineer and exploit programs at the assembly

level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

3

Learning Goals
• Learn what assembly language is and why it is important
• Become familiar with the format of human-readable assembly and x86
• Learn the mov instruction and how data moves around at the assembly level

4

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction

cp -r /afs/ir/class/cs107/lecture-code/lect15 .

5

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction

cp -r /afs/ir/class/cs107/lecture-code/lect15 .

6

GCC
• GCC is the compiler that converts your human-readable code into machine-

readable instructions.
• C, and other languages, are high-level abstractions we use to write code

efficiently. But computers don’t really understand things like data structures,
variable types, etc. Compilers are the translator!
• Pure machine code is 1s and 0s – everything is bits, even your programs! But

we can read it in a human-readable form called assembly. (Engineers used to
write code in assembly before C).
• There may be multiple assembly instructions needed to encode a single C

instruction.
• We’re going to go behind the curtain to see what the assembly code for our

programs looks like.

7

Why are we reading assembly?

Main goal: Information retrieval
• We will not be writing assembly! (that’s the compiler’s job)
• Rather, we want to translate the assembly back into our C code.
• Knowing how our C code is converted into machine instructions gives us

insight into how to write more efficient, cleaner code.

C codeidea Assembly
code Machine code

Programmer-
generated

gcc (compiler+assembler)
generated

8

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction

cp -r /afs/ir/class/cs107/lecture-code/lect15 .

9

Demo: Looking at an
Executable (objdump -d)

10

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

What does this look like in assembly?

11

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

make
objdump -d sum

12

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

13

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

This is the name of the function (same
as C) and the memory address where
the code for this function starts.

14

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

These are the memory addresses where
each of the instructions live. Sequential
instructions are sequential in memory.

15

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

This is the assembly code:
“human-readable” versions of
each machine code instruction.

16

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

This is the machine code: raw
hexadecimal instructions,
representing binary as read by the
computer. Different instructions may
be different byte lengths.

17

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

18

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

Each instruction has an
operation name (“opcode”).

19

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retqEach instruction can also have

arguments (“operands”).

20

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

$[number] means a constant value,
or “immediate” (e.g. 1 here).

21

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

%[name] means a register, a storage
location on the CPU (e.g. edx here).

22

🌟 Keep a resource guide handy 🌟
• https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf
• CS107 x86 Guide: https://cs107.stanford.edu/guide/x86-64.html
• B&O book:

• Canvas -> Files
-> Bryant_OHallaron_ch3.1-3.8.pdf

• It’s like learning how to read (not speak) a new language! (again!)

https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf
https://cs107.stanford.edu/guide/x86-64.html

23

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov instruction

cp -r /afs/ir/class/cs107/lecture-code/lect15 .

24

Assembly Abstraction
• C abstracts away the low-level details of machine code. It lets us work using

variables, variable types, and other higher-level abstractions.
• C and other languages let us write code that works on most machines.
• Assembly code is just bytes! No variable types, no type checking, etc.
• Assembly/machine code is processor-specific.
• What is the level of abstraction for assembly code?

25

Registers

%rax

26

Registers

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

27

Registers

What is a register?

A register is a fast read/write memory
slot right on the CPU that can hold

variable values.
Registers are located in the CPU; they

are separate from main memory.

28

Registers
A register is a 64-bit space inside the processor.
• There are 16 registers available, each with a unique name.
• Registers are like “scratch paper” for the processor. Data being calculated or

manipulated is moved to registers first. Operations are performed on
registers.
• Registers also hold parameters and return values for functions.
• Registers are extremely fast memory!
• Processor instructions consist mostly of moving data into/out of registers and

performing arithmetic on them. This is the level of logic your program must be
in to execute!

29

Computer architecture

memory needed
for program
execution
(stack, heap, etc.)
accessed by address

registers accessed
by name

ALU is main
workhorse of CPU

disk/server stores program
when not executing

30

Machine-Level Code
Assembly instructions manipulate these registers. For example:
• One instruction adds two numbers in registers
• One instruction transfers data from a register to memory
• One instruction transfers data from memory to a register

31

GCC And Assembly
• GCC compiles your program – it lays out memory on the stack and heap and

generates assembly instructions to access and do calculations on those
memory locations.
• Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

int sum = x + y; 1) Copy x into register 1
2) Copy y into register 2
3) Add register 2 to register 1
4) Write register 1 to memory for sum

32

Instruction set architecture (ISA)
We are going to learn the x86-64 instruction set
architecture (used by Intel and AMD processors).

• There are many other instruction sets: ARM, MIPS, etc.

• An ISA is a contract between program/compiler and
hardware:

• Defines operations that the processor (CPU) can execute
• Data read/write/transfer operations
• Control mechanisms

• Intel originally designed their instruction set in 1978.
• Legacy support is a huge issue for x86-64
• Originally 16-bit processor, then 32 bit, now 64 bit.

These design choices dictated the register sizes
(and even register/instruction names).

Compiler

Application program

OS
ISA

CPU design

Circuit design

Chip layout

33

Aside: 32-to-64-bit Transition

• Early 2000s: most computers were 32-bit. This means that pointers were 4
bytes (32 bits).
• 32-bit pointers store a memory address from 0 to 232-1, equaling 232 bytes of

addressable memory. This equals 4 Gigabytes, meaning that 32-bit
computers could have at most 4GB of memory (RAM)!
• Because of this, computers transitioned to 64-bit. This means that datatypes

were enlarged; pointers in programs were now 64 bits.
• 64-bit pointers store a memory address from 0 to 264-1, equaling 264 bytes of

addressable memory. This equals 16 Exabytes, meaning that 64-bit
computers could have at most 1024*1024*1024*16 GB of memory (RAM)!

34

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction

cp -r /afs/ir/class/cs107/lecture-code/lect15 .

35

mov
The mov instruction copies bytes from one place to another;
it is like the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

$0x104

%rbx
0x6005c0Direct address

36

Operand Forms: Immediate

mov $0x104,_____

Copy the value
0x104 into some

destination.

37

Operand Forms: Registers

mov %rbx,____

mov ____,%rbx

Copy the value in
register %rbx into
some destination.

Copy the value
from some source
into register %rbx.

38

Operand Forms: Absolute Addresses

mov 0x104,_____

mov _____,0x104

Copy the value at
address 0x104 into
some destination.

Copy the value
from some source
into the memory at

address 0x104.

39

Practice #1: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 5 is stored at address 0x42, and the value 8
is stored in %rbx.

1. mov $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55

40

Operand Forms: Indirect

mov (%rbx),_____

mov _____,(%rbx)

Copy the value at the
address stored in register

%rbx into some destination.

Copy the value from some source
into the memory at the address

stored in register %rbx.

41

Operand Forms: Base + Displacement

mov 0x10(%rax),_________

mov __________,0x10(%rax)

Copy the value at the
address (0x10 plus what is
stored in register %rax) into

some destination.

Copy the value from some source
into the memory at the address (0x10
plus what is stored in register %rax).

42

Operand Forms: Indexed

mov (%rax,%rdx),__________

mov ___________,(%rax,%rdx)

Copy the value at the address which is
(the sum of the values in registers %rax

and %rdx) into some destination.

Copy the value from some source into the
memory at the address which is (the sum of

the values in registers %rax and %rdx).

43

Operand Forms: Indexed

mov 0x10(%rax,%rdx),______

mov _______,0x10(%rax,%rdx)

Copy the value at the address which is (the
sum of 0x10 plus the values in registers
%rax and %rdx) into some destination.

Copy the value from some source into the
memory at the address which is (the sum of 0x10

plus the values in registers %rax and %rdx).

44

Practice #2: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x11 is stored at address 0x10C, 0xAB is
stored at address 0x104, 0x100 is stored in register %rax and 0x3 is stored in
%rdx.

1. mov $0x42,(%rax)
2. mov 4(%rax),%rcx
3. mov 9(%rax,%rdx),%rcx

Imm(rb, ri) is equivalent to address Imm + R[rb] + R[ri]

Displacement: positive or
negative constant (if missing, = 0)

Base: register
(if missing, = 0)

Index: register
(if missing, = 0)

For #3, respond with your thoughts on PollEv:
pollev.com/cs107 or text CS107 to 22333 once
to join.

45

Recap
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of

Abstraction
• The mov instruction

Next time: diving deeper into assembly

Lecture 15 takeaway:
Assembly is the human-
readable version of the form
our programs are ultimately
executed in by the processor.
The compiler translates
source code to machine
code. The most common
assembly instruction is mov
to move data around.

46

Extra Practice

47

1. Extra Practice
Fill in the blank to complete the C code that 1. generates this assembly

2. has this register layout
int x = ...
int *ptr = malloc(…);
...
___???___ = _???_;

mov %ecx,(%rax)

🤔<val of x>

%ecx

(Pedantic: You should sub in
<x> and <ptr> with actual
values, like 4 and 0x7fff80)

<val of ptr>

%rax

48

1. Extra Practice
Fill in the blank to complete the C code that 1. generates this assembly

2. has this register layout
int x = ...
int *ptr = malloc(…);
...
___???___ = _???_;

mov %ecx,(%rax)

<val of x>

%ecx

<val of ptr>

%rax

*ptr = x;

