CS107, Lecture 16
Assembly: Arithmetic and Logic

Reading: B&O 3.5-3.6

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: 2 Creative Commons Attribution 2.5 License. All rights reserved.

‘u l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

CS107 Topic 5

How does a computer interpret and execute C programs?

Why is answering this question important?

* Learning how our code is really translated and executed helps us write better
code

* We can learn how to reverse engineer and exploit programs at the assembly
level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

Last Lecture This Lecture

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 3

Helpful Assembly Resources

* Course textbook (reminder: see relevant readings for each lecture on the
Calendar page, http://cs107.stanford.edu/calendar.html)

* CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-
64-reference.pdf

e CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html

http://cs107.stanford.edu/calendar.html
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/guide/x86-64.html

Learning Goals

* Learn how to perform arithmetic and logical operations in assembly

* Begin to learn how to read assembly and understand the C code that
generated it

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 6

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! >

The mov instruction copies bytes from one place to another;

it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
* Immediate (constant value, like a number) (only src)

* Register

* Memory Location
(at most one of src, dst)

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) What’s in %rax

4(%rax) What's in %rax, plus 4
(%rax, %rdx) Sum of what’s in %rax and %rdx
4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

We calculate this value and then go to that address.

Operand Forms So Far

Imm(r,, r;)isequivalenttoaddress Imm + R

/

[r,] + R[r;]

/ N

Displacement: positive or
negative constant (if missing, = 0)

Base: register

(if missing, = 0)

]

Index: register

(if missing, = 0)

10

Operand Forms: Scaled Indexed

Copy the value at the address which
is (4 times the value in register
%rdx) into some destination.

mov (9 %rdx, 4) 9 The scaling factor

(e.g. 4 here) must
be hardcoded to
be either 1, 2, 4

mov ,(,%de,4)om.

Copy the value from some source into the
memory at the address which is (4 times
the value in register %rdx). 1

Operand Forms: Scaled Indexed

Copy the value at the address which is
(4 times the value in register %rdx, plus
0x4), into some destination.

mov ox4(,%»rdx,4),

mov ,0x4(,%rdx,4)

Copy the value from some source into the
memory at the address which is (4 times
the value in register %rdx, plus 0x4). :>

Operand Forms: Scaled Indexed

Copy the value at the address which is (the
value in reqister %rax plus 2 times the value in
register %rdx) into some destination.

mov (%rax,%rdx,2),
mov , (%rax,%rdx,2)

Copy the value from some source into the memory at
the address which is (the value in reqister Y%rax
plus 2 times the value in register %radx). 13

Operand Forms: Scaled Indexed

Copy the value at the address which is (0x4 plus the
value in register %rax plus 2 times the value in
register %rdx) into some destination.

mov Ox4(%rax,srdx,2),
mov ,0x4(%rax,srdx,2)

Copy the value from some source into the memory at
the address which is (0x4 plus the value in register
Y%rax plus 2 times the value in register %rdx). 14

Most General Operand Form

Imm(ry,r;,s)
IS equivalent to...

Imm + R[r,] + R[r;]*s

Most General Operand Form

Imm(r,, r;, S)isequivalentto
address/Imm + R[r/'b] + Rwi]*%

L 1
Displacement: Index: register
pos/neg constant (if missing, = 0)

(if missing, = 0) Base: register (if
missing, = 0)

Scale must be
1,2,4, or 8
(if missing, = 1)

16

Operand Forms

Type Operand Value Name
Immediate $Imm Imm Immediate
Register Ty R[r,] Register
Memory Imm M[Imm] Absolute
Memory (1) M[R[7,]] Indirect
Memory Imm(r) M[Imm + R[rp]] Base + displacement
Memory (1, 17) M[R[r,] + R[n;]] Indexed
Memory Imm(ry, 1;) M[Imm + R[r,] + R[r;]] Indexed
Memory (1, 8) M[R[r;] - s] Scaled indexed
Memory Imm(,1;,) M[Imm + R[r;] - s] Scaled indexed
Memory (15,13, S) M[R[rp] + R[r;] - s] Scaled indexed
Memory Imm(ry,,1;,S) M[Imm + R[r,] + R[r;] -+ s] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

Practice #3: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value Ox1 is stored in register %rcx, the value
Ox100 is stored in register %rax, the value 0x3 is stored in register %rdx, and
value Ox11 is stored at address Ox10C.

For #2, respond with your thoughts on
PollEv: pollev.com/cs107 or text CS107

1. mov $0x42,0xfc(,%rcx,4) |1059333 once to join.

2. mov (%rax,%rdx,4),%rbx
Imm(r,, r;, S)isequivalentto

address Imm + R[r,] + R[r;]*s

18

Goals of indirect addressing: C

Why are there so many forms of
indirect addressing?

We see these indirect addressing
paradigms in C as well!

From Assembly to C

What might be the equivalent C-like operation?

1. mov $0x0, %rdx

2. mov %rdX, Brcx

3. mov $0x42, (%rdi)

4. mov (%rax,srcx,8),%rax

&

20

From Assembly to C

What might be the equivalent C-like operation?

Indirect addressing
mov $0x0,%rdx -> maybe long x = © is like pointer
mov %rdx,%rcx -> maybe long x = y; arithmetic/deref!

mov $0x42, (%rdi) -> maybe *ptr = 0x42;
mov (%rax,%rcx,8),%rax -> maybe long x = arr[i];

= w e

21

Lecture Plan

* Recap: mov so far

* Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 2

Data sizes in assembly have slightly different terminology to get used to:
* A byte is 1 byte.

 Aword is 2 bytes.

* A double word is 4 bytes.

* A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:

* b means byte

* W means word

e 1 means double word

* d means quad word -

Register Sizes

Bit: 63 31 15 7 %)
%rax %eax |%ax [%al |“
%rbx %ebx lwbx [o1 |“
%rcx %ecx ex el |“
%rdx %edx lwdx [%a1 |“
%rsi %esi ‘%si | %si1 |“
%rdi %edi |%di [xdil |“

24

Register Sizes

Bit: 63 31 15 7 %)
%rbp %ebp |%bp [%bp1 |“
%rsp %esp ‘%sp |%spl |“
%8 %r8d |%rew [%rsb |“
%r9 %r9d ‘ %row |%rob |“
%r10 %r10d |%r10w [%r1eb |“
%r11 %r11d ‘ %rllw |%riib |“

25

Register Sizes

Bit: 63 31 1> . :
%12 %r12d ‘ %ri2w | %ri2b |“
%r13 %r13d ‘ %r13w | %r13b |“
%14 %r14d ‘ %ridw | %riab |“
%r15 %r15d ‘ %ri5w | %risb |“

26

Register Responsibilities

Some registers take on special responsibilities during program execution.
* %rax stores the return value

* %rdi stores the first parameter to a function

* %rsi stores the second parameter to a function

* %rdx stores the third parameter to a function

* %rip stores the address of the next instruction to execute

* %rsp stores the address of the current top of the stack

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 7

NVALEHERLIS

* mov can take an optional suffix (b,w,l,q) that specifies the size of data to move:
movb, movw, movl, movq

* mov only updates the specific register bytes or memory locations indicated.
* Exception: movl writing to a register will also set high order 4 bytes to 0.

28

Practice: mov And Data Sizes

Sometimes, you might see mov suffixes that specify the amount of data being
moved. Other times, they are omitted if we can deduce the size from the
arguments.

movl %eax, (%rsp)

movw (%rax),%dx
movb (%rsp,%srdx,4),%dl
mov $0x0,%eax

29

* The movabsq instruction is used to write a 64-bit Immediate (constant) value.

* The regular movq instruction can only take 32-bit immediates.
* 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

30

movz and movs

* There are two mov instructions that can be used to copy a smaller source to a
larger destination: movz and movs.

* movz fills the remaining bytes with zeros

* movs fills the remaining bytes by sign-extending the most significant bit in the
source.

* The source must be from memory or a register, and the destination is a
register.

31

movz and movs

MOVZ S,R R « ZeroExtend(S)

Instruction Description

movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
movzbq Move zero-extended byte to quad word
movzwg Move zero-extended word to quad word

32

movz and movs

MOVS S,R R « SignExtend(S)

Instruction Description

movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word
movsbq Move sign-extended byte to quad word
MOV SW(Move sign-extended word to quad word
movslq Move sign-extended double word to quad word
cltq Sign-extend %eax to %rax

%rax <- SignExtend(%eax)

33

Register Sizes

* The operand forms with parentheses (e.g. mov (%rax)) require that registers in
parentheses be the 64-bit registers.

* For that reason, you may see smaller registers extended with e.g. movs into
the larger registers before these kinds of instructions.

34

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int 1 = @; 1 < nelems; i++) {
sum += arr[i];

}
return sum;
}
0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0, %eax
40113b: ba 00 00 00 00 mov $0x0, %edx
401140: 39 0 cmp %esi,neax
401142 7d @b jge 40114f <sum_array+0x19>
401144 48 63 c8 movslq %eax,%rcx
401147 : 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 co0 01 add $0x1, %eax
40114d: eb f1l jmp 401140 <sum_array+0xa>
40114f: 89 do mov %edx, %eax

401151 c3 retq 35

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 36

The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

37

e e e o

6 (%r-ax) , srdx Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

38

e e e o

6(%rax), %rdx

(%rax, %rcx), %rdx

Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

39

e e e o

6(%rax), %rdx

(%rax, %rcx), %rdx

(%rax, %rcx, 4), %rdx

Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

Go to the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

40

6 (%r'ax) , srdx Go to the address (6 + what’s in %rax), = Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

(%rax, %pcx) , srdx Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

(%rax, %rcx, 4), %rdx Goto the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

7(%rax, %rax, 8), %rdx ©Goto the address (7 + %rax + 8 * %rax) Copy (7 + %rax + 8 * %rax) into %rdx.
and copy data there into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

41

Reverse Engineering Practice

void calculate(int x, int y, int *ptr) {
? .

} Note: assume x is in %rdi, y
IS in %rsi and ptr is in %rdx.

calculate:
leal (%rdi,%rsi,2), %eax
movl %eax, (%rdx)
ret

42

Reverse Engineering Practice

void calculate(int x, int y, int *ptr) {
*ptr = x + 2 * y;

calculate:
leal (%rdi,%rsi,2), %eax
movl %eax, (%rdx)
ret

43

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 44

A Note About Operand Forms

* Many instructions share the same address operand forms that mov uses.
e Eg. 7(%rax, %rcx, 2).

* These forms work the same way for other instructions, except for lea:
* It interprets this form as just the calculation, not the dereferencing
* lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

45

Unary Instructions

The following instructions operate on a single operand (register or memory):

Instruction Effect Description
inc D De«<D+1 Increment
dec D De«<D-1 Decrement
neg D D « -D Negate

not D D « ~D Complement

Examples:
incqg 16(%rax)
dec %rdx

not %rcx

46

Binary Instructions

The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Instruction Effect Description
add S, D D«<D+S Add

sub S, D D«<D-S Subtract
imul S, D D«D*S Multiply
xor S, D De«<DA”™S Exclusive-or
or S, D De«D]| S Or

and S, D D«D&S And

Examples:

addg %rcx, (%rax)
xorqg $16, (%rax, %rdx, 8)
subg %rdx,8(%rax) 7

The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Instruction Effect Description

sal k, D D « D << k Left shift

shl k, D D « D << k Left shift (same as sal)
sar k, D D« D >,k Arithmetic right shift
shr k, D D« D> k Logical right shift

Examples:
shll $3, (%rax)
shrl %cl, (%rax,%rdx,8)
sarl $4,8(%rax)

48

* Recap: mov so far Lecture 11 takeaway: There are
* Data and Register Sizes assembly instructions for arithmetic
* The lea Instruction and logical operations. They share

* Logical and Arithmetic Operations | the same operand form as mov, but
lea interprets them differently.
There are also different register sizes
that may be used in assembly
instructions.

Next Time: more arithmetic operations, and reverse engineering practice

49

Extra Practice

1. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long arr[5];

long num = pP? ;

mov (%rdi, %rcx, 8),%rax

<val of num> <val of arr> (' O
| S

%rax %rcx %rdi
51

1. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long arr[5];
long num = arr[3];
. long num = *(arr + 3);
long num = _ ??: 5 long num = *(arr + y);

(assume long y = 3;
declared earlier)

mov (%rdi, %rcx, 8),%rax

<val of num> <val of arr>

%rax %rcx %rdi
52

2. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char str[5];

P77 = '¢c';

mov $0x63, (%rcx,%srdx,1)

e

%%rcx %rdx
53

2. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char str[5];

395 _ |C|. Str‘[Z] — lcl;
— ’ ¥(str + 2) = 'c';

mov $0x63, (%rcx,%srdx,1)

%%rcx %rdx
54

