
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 17
Assembly: Arithmetic and Logic, Continued

Reading: B&O 3.5-3.6

😷 masks recommended

2

CS107 Topic 5
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better

code
• We can learn how to reverse engineer and exploit programs at the assembly

level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

3

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

This Lecture

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

4

Helpful Assembly Resources
• Course textbook (reminder: see relevant readings for each lecture on the

Calendar page, http://cs107.stanford.edu/calendar.html)
• CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-

64-reference.pdf
• CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html

http://cs107.stanford.edu/calendar.html
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/guide/x86-64.html

5

Learning Goals
• Learn how to perform arithmetic and logical operations in assembly
• Begin to learn how to read assembly and understand the C code that

generated it

6

Lecture Plan
• Recap: Local and Arithmetic Operations so far
• More on Multiplication and Division
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

7

Lecture Plan
• Recap: Local and Arithmetic Operations so far
• More on Multiplication and Division
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

8

A Note About Operand Forms
• Many instructions share the same address operand forms that mov uses.

• Eg. 7(%rax, %rcx, 2).

• These forms work the same way for other instructions, with the exception of
lea:

• It interprets this form as just the calculation, not the dereferencing
• lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

Summary: parentheses means “dereference”, except for with lea.

9

lea
The lea instrucWon copies an “effecWve address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the desWnaWon, lea copies
the value of src itself to the desWnaWon.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

10

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

7(%rax, %rax, 8), %rdx Go to the address (7 + %rax + 8 * %rax)
and copy data there into %rdx.

Copy (7 + %rax + 8 * %rax) into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

11

Unary Instructions
The following instructions operate on a single operand (register or memory):

Examples:
incq 16(%rax)
dec %rdx
not %rcx

Instruction Effect Description

inc D D ← D + 1 Increment

dec D D ← D - 1 Decrement

neg D D ← -D Negate

not D D ← ~D Complement

12

Binary Instructions
The following instrucWons operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locaWons.
Read it as, e.g. “Subtract S from D”:

Examples:
addq %rcx,(%rax)

xorq $16,(%rax, %rdx, 8)
subq %rdx,8(%rax)

Instruction Effect Description

add S, D D ← D + S Add

sub S, D D ← D - S Subtract

imul S, D D ← D * S Multiply

xor S, D D ← D ^ S Exclusive-or

or S, D D ← D | S Or

and S, D D ← D & S And

13

Shift Instructions
The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Examples:
shll $3,(%rax)
shrl %cl,(%rax,%rdx,8)
sarl $4,8(%rax)

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

14

Shift Amount

When a shift instruction uses %cl, it looks at only the number of bits in %cl that
make sense for what is being shifted.
• E.g. when shifting 1 byte, it looks only at the lower 3 bits (storing at most 7)
• E.g. when shifting 2 bytes, it looks only at the lower 4 bits (storing at most 15)
• When shifting w bits, it looks at the low-order log2(w) bits of %cl for the shift

amount.
• Why is this useful? Can specify shift amount as all 1s, but it will shift by the

appropriate amount.

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

15

Assembly Exploration
Let’s pull these commands together and see how some C code might be
translated to assembly.
• Compiler Explorer is a handy website that lets you quickly write C code and see

its assembly translation. Let’s check it out! https://godbolt.org/z/Ecbde99e3

https://godbolt.org/z/Ecbde99e3

16

Code Reference: calculate
int calculate(int x, int arr[]) {

int sum = x;
sum += arr[0];
sum <<= x;
sum &= 512;
return sum;

}

calculate:
movl %edi, %ecx
movl %edi, %eax
addl (%rsi), %eax
sall %cl, %eax
andl $512, %eax
ret

17

Lecture Plan
• Recap: Local and Arithmetic Operations so far
• More on Multiplication and Division
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

18

Large Multiplication
Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64
support this with only 64-bit registers?
• If you specify two operands to imul, it multiplies them together and truncates

until it fits in a 64-bit register.
imul S, D D ← D * S

• If you specify one operand, it multiplies that by %rax, and splits the product
across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description

imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply

mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply

19

Division and Remainder

• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• Terminology: dividend / divisor = quotient with remainder
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits

are in %rax. The divisor is the operand to the instruction.
• The quotient is stored in %rax, and the remainder in %rdx.

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

20

Division and Remainder

• Terminology: dividend / divisor = quotient with remainder
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits

are in %rax. The divisor is the operand to the instruction.
• Most division uses only 64-bit dividends. The cqto instruction sign-extends the

64-bit value in %rax into %rdx to fill both registers with the dividend, as the
division instruction expects.

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word

21

Compiler Explorer Demo

https://godbolt.org/z/4cT75M4nd

https://godbolt.org/z/4cT75M4nd

22

Code Reference: full_divide
// Returns x/y, stores remainder in location stored in remainder_ptr
long full_divide(long x, long y, long *remainder_ptr) {

long quotient = x / y;
long remainder = x % y;
*remainder_ptr = remainder;
return quotient;

}

full_divide:
movq %rdi, %rax
movq %rdx, %rcx
cqto
idivq %rsi
movq %rdx, (%rcx)
ret

23

Lecture Plan
• Recap: Local and Arithmetic Operations so far
• More on Multiplication and Division
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

24

Assembly Exercise 1
000000000040116e <sum_example1>:
40116e: 8d 04 37 lea (%rdi,%rsi,1),%eax
401171: c3 retq

Which of the following is most likely to have generated the above assembly?

// A)
void sum_example1() {

int x;
int y;
int sum = x + y;

}

// B)
int sum_example1(int x, int y) {

return x + y;
}

// C)
void sum_example1(int x, int y) {

int sum = x + y;
}

25

Assembly Exercise 2
0000000000401172 <sum_example2>:

401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub 0x18(%rdi),%eax
40117a: c3 retq

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

}

What location or value in the assembly above represents the
C code’s sum variable?

%eax

26

Assembly Exercise 3
0000000000401172 <sum_example2>:

401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub 0x18(%rdi),%eax
40117a: c3 retq

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

}

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

Respond with your thoughts on
PollEv: pollev.com/cs107 or text
CS107 to 22333 once to join.

27

Assembly Exercise 3
0000000000401172 <sum_example2>:

401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub 0x18(%rdi),%eax
40117a: c3 retq

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

}

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

0x18

28

Recap
• Recap: Local and Arithmetic

Operations so far
• More on Multiplication and

Division
• Practice: Reverse Engineering

Next Time: control flow in assembly
(while loops, if statements, and
more)

Lecture 17 takeaway: There are
assembly instructions for
arithmetic and logical
operations. They share the
same operand form as mov, but
lea interprets them differently.
There are also different register
sizes that may be used in
assembly instructions.

29

Extra Practice

30

Reverse Engineering 1
int add_to(int x, int arr[], int i) {

int sum = ___?___;
sum += arr[___?___];
return ___?___;

}

// x in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx
movl %edi, %eax
addl (%rsi,%rdx,4), %eax
ret

31

Reverse Engineering 1
int add_to(int x, int arr[], int i) {

int sum = ___?___;
sum += arr[___?___];
return ___?___;

}

// x in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx // sign-extend i into full register
movl %edi, %eax // copy x into %eax
addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

32

Reverse Engineering 1
int add_to(int x, int arr[], int i) {

int sum = x;
sum += arr[i];
return sum;

}

// x in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx // sign-extend i into full register
movl %edi, %eax // copy x into %eax
addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

33

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[___?___] * ___?___;
z -= ___?___;
z >>= ___?___;
return ___?___;

}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax
imull (%rdi), %eax
subl 4(%rdi), %eax
sarl $2, %eax
addl $2, %eax
ret

34

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[___?___] * ___?___;
z -= ___?___;
z >>= ___?___;
return ___?___;

}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull (%rdi), %eax // multiply %eax by nums[0]
subl 4(%rdi), %eax // subtract nums[1] from %eax
sarl $2, %eax // shift %eax right by 2
addl $2, %eax // add 2 to %eax
ret

35

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[0] * y;
z -= nums[1];
z >>= 2;
return z + 2;

}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull (%rdi), %eax // multiply %eax by nums[0]
subl 4(%rdi), %eax // subtract nums[1] from %eax
sarl $2, %eax // shift %eax right by 2
addl $2, %eax // add 2 to %eax
ret

36

Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = ___?___ + 1;
long result = x % ___?___;
return ___?___;

}

// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax
leaq 1(%rdi), %rcx
movq %rcx, (%rsi)
cqto
idivq %rcx
movq %rdx, %rax
ret

https://godbolt.org/z/hGKPWszq4

https://godbolt.org/z/hGKPWszq4

37

Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = ___?___ + 1;
long result = x % ___?___;
return ___?___;

}

// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax // copy x into %rax
leaq 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax
ret

38

Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = x + 1;
long result = x % *ptr; // or x + 1
return result;

}

// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax // copy x into %rax
leaq 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax
ret

39

Side Note: Old GCC Output
long func(long x, long *ptr) {

*ptr = x + 1;
long result = x % *ptr; // or x + 1
return result;

}

// x in %rdi, ptr in %rsi
func:

leaq 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
movq %rdi, %rax // copy x into %rax
cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax
ret

