CS107, Lecture 17

Assembly: Arithmetic and Logic, Continued

Reading: B&O 3.5-3.6

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: 2 Creative Commons Attribution 2.5 License. All rights reserved.

‘u l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

CS107 Topic 5

How does a computer interpret and execute C programs?

Why is answering this question important?

* Learning how our code is really translated and executed helps us write better
code

* We can learn how to reverse engineer and exploit programs at the assembly
level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

This Lecture

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 3

Helpful Assembly Resources

* Course textbook (reminder: see relevant readings for each lecture on the
Calendar page, http://cs107.stanford.edu/calendar.html)

* CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-
64-reference.pdf

e CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html

http://cs107.stanford.edu/calendar.html
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/guide/x86-64.html

Learning Goals

* Learn how to perform arithmetic and logical operations in assembly

* Begin to learn how to read assembly and understand the C code that
generated it

Lecture Plan

* Recap: Local and Arithmetic Operations so far
* More on Multiplication and Division
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 6

Lecture Plan

* Recap: Local and Arithmetic Operations so far
* More on Multiplication and Division
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! >

A Note About Operand Forms

* Many instructions share the same address operand forms that mov uses.
e Eg. 7(%rax, %rcx, 2).
* These forms work the same way for other instructions, with the exception of
lea:

* It interprets this form as just the calculation, not the dereferencing
* lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

Summary: parentheses means “dereference”, except for with lea.

The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

6 (%r'ax) , srdx Go to the address (6 + what’s in %rax), = Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

(%rax, %pcx) , srdx Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

(%rax, %rcx, 4), %rdx Goto the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

7(%rax, %rax, 8), %rdx ©Goto the address (7 + %rax + 8 * %rax) Copy (7 + %rax + 8 * %rax) into %rdx.
and copy data there into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

10

Unary Instructions

The following instructions operate on a single operand (register or memory):

Instruction Effect Description
inc D De«<D+1 Increment
dec D De«<D-1 Decrement
neg D D « -D Negate

not D D « ~D Complement

Examples:
incqg 16(%rax)
dec %rdx

not %rcx

11

Binary Instructions

The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Instruction Effect Description
add S, D D«<D+S Add

sub S, D D«<D-S Subtract
imul S, D D«D*S Multiply
xor S, D De«<DA”™S Exclusive-or
or S, D De«D]| S Or

and S, D D«D&S And

Examples:

addg %rcx, (%rax)
xorqg $16, (%rax, %rdx, 8)
subg %rdx, 8(%rax) 12

The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Instruction Effect Description

sal k, D D « D << k Left shift

shl k, D D « D << k Left shift (same as sal)
sar k, D D« D >,k Arithmetic right shift
shr k, D D« D> k Logical right shift

Examples:
shll $3, (%rax)
shrl %cl, (%rax,%rdx,8)
sarl $4,8(%rax)

13

Instruction Effect Description

sal k, D D «D << k Left shift

shl k, D D « D << k Left shift (same as sal)
sar k, D D «D >,k Arithmetic right shift
shr k, D D«D >, k Logical right shift

When a shift instruction uses %cl, it looks at only the number of bits in %cl that
make sense for what is being shifted.

* E.g. when shifting 1 byte, it looks only at the lower 3 bits (storing at most 7)
* E.g. when shifting 2 bytes, it looks only at the lower 4 bits (storing at most 15)

* When shifting w bits, it looks at the low-order log2(w) bits of %cl for the shift
amount.

* Why is this useful? Can specify shift amount as all 1s, but it will shift by the
appropriate amount.

14

Assembly Exploration

Let’s pull these commands together and see how some C code might be
translated to assembly.

* Compiler Explorer is a handy website that lets you quickly write C code and see
its assembly translation. Let’s check it out! https://godbolt.org/z/Ecbde99e3

15

https://godbolt.org/z/Ecbde99e3

Code Reference: calculate

int calculate(int x, int arr[]) {
int sum = X;
sum += arr[0];
sum <<= X;
sum &= 512;
return sum;

calculate:
movl %edi, %ecx
movl %edi, %eax
addl (%rsi), %eax
sall %cl, %eax
andl $512, %eax
ret

16

Lecture Plan

* Recap: Local and Arithmetic Operations so far
* More on Multiplication and Division
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 17

Large Multiplication

Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64
support this with only 64-bit registers?

* If you specify two operands to imul, it multiplies them together and truncates
until it fits in a 64-bit register.

imul S, D De«D*S

* If you specify one operand, it multiplies that by %rax, and splits the product
across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64

bits in %rax.

Instruction Effect Description

imulg S R[%rdx]:R[%rax] « S x R[%rax] Signed full multiply
mulg S R[%rdx]:R[%rax] « S x R[%rax] Unsigned full multiply

18

Division and Remainder

Instruction Effect Description

idivqg S R[%rdx] « R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divg S R[%rdx] « R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] < R[%rdx]:R[%rax] = S

* x86-64 supports dividing up to a 128-bit value by a 64-bit value.
* Terminology: dividend / divisor = quotient with remainder

* The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits
are in %rax. The divisor is the operand to the instruction.

* The quotient is stored in %rax, and the remainder in %rdx.

19

Division and Remainder

Instruction Effect Description

idivqg S R[%rdx] « R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divg S R[%rdx] « R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] < R[%rdx]:R[%rax] = S

cqgto R[%rdx]:R[%rax] <« SignExtend(R[%rax]) Convert to oct word

* Most division uses only 64-bit dividends. The cqto instruction sign-extends the
64-bit value in %rax into %rdx to fill both registers with the dividend, as the

division instruction expects. N

Compiler Explorer Demo

https://godbolt.org/z/4cT75M4nd

https://godbolt.org/z/4cT75M4nd

Code Reference: full divide

// Returns x/y, stores remainder in location stored in remainder_ ptr

long full divide(long x, long y, long *remainder ptr) {
long quotient = x / vy;

long remainder = X % y;
*remainder ptr = remainder;

return quotient;

full divide:
movq %rdi, %rax
movq %rdx, %rcx
cqgto
idivqg %rsi
movq %rdx, (%rcx)
ret 22

Lecture Plan

* Recap: Local and Arithmetic Operations so far
* More on Multiplication and Division
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 23

Assembly Exercise 1

00000000401 16e <sum examplel>:
40116e: 8d 04 37 lea (%rdi,%rsi,1),%eax

401171: c3 retq

Which of the following is most likely to have generated the above assembly?

B)
int sum_examplel(int x, int y) {

/] R)

void sum_examplel() {
int Xx; return x + y;
int y; }
int sum = X + y;

}

// C)

void sum_examplel(int x, int y) {
int sum = x + y;
}
24

Assembly Exercise 2

000000000P401172 <sum example2>:

401172: 8b 47 0Oc mov Oxc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub 0x18(%rdi),%eax
490117a: c3 retqg
int sum_example2(int arr[]) { What location or value in the assembly above represents the
int sum = 9; C code’s sum variable?

sum += arr[0];
sum += arr[3];

sum -= arr[6]; OA)eax

return sum;

Assembly Exercise 3

000000000P401172 <sum example2>:

401172: 8b 47 Oc
401175: 03 07
401177: 2b 47 18
40117a: c3

int sum_example2(int arr[]) {
int sum = 9;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

mov ©Oxc(%rdi),%eax
add (%rdi),%eax

sub 0x18(%rdi),%eax
retq

Respond with your thoughts on
PollEv: pollev.com/cs107 or text
CS107 to 22333 once to join.

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

26

Assembly Exercise 3

000000000P401172 <sum example2>:

401172: 8b 47 0Oc mov Oxc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub 0x18(%rdi),%eax
490117a: c3 retqg

int sum_example2(int arr[]) {
int sum = 9;

sum += arr[0]; What location or value in the assembly code above
sum += arr[3]; represents the C code’s 6 (as in arr[6])?

sum -= arr[6];

return sum; 0x1 8

* Recap: Local and Arithmetic Lecture 17 takeaway: There are
Operations so far . .

assembly instructions for
arithmetic and logical
operations. They share the
same operand form as mov, but
lea interprets them differently.
There are also different register
sizes that may be used in
assembly instructions.

* More on Multiplication and
Division
* Practice: Reverse Engineering

Next Time: control flow in assembly
(while loops, if statements, and
more) 28

Extra Practice

Reverse Engineering 1

int add_to(int x, int arr[], int i) {

int sum = ? ;
sum += arr[? 1;
return ? ;

// X 1n %edi, arr 1in %rsi, 1 1n %edxX
add_to:

movslq %edx, 7%rdx

movl %edi, %eax

addl (%rsi,%rdx,4), %eax

ret

30

Reverse Engineering 1

int add_to(int x, int arr[], int i) {

int sum = ? ;
sum += arr[? 1;
return ? ;
}
// X 1n %edi, arr 1in %rsi, 1 1n %edxX
add_to:
movslq %edx, 7%rdx // sign-extend 1 into full register
movl %edi, %eax // copy X into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

31

Reverse Engineering 1

int add _to(int x, int arr[], int 1) {
int sum = X;
sum += arr[i];
return sum;

}

// X 1n %edi, arr 1in %rsi, 1 1n %edxX

add_to:
movslq %edx, 7%rdx // sign-extend 1 into full register
movl %edi, %eax // copy X into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

32

Reverse Engineering 2

int elem arithmetic(int nums[], int y) {

int z = nums| ?] *
z -= ?

J
Z >>= ? ;
return ? ;

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

?

)

33

Reverse Engineering 2

int elem arithmetic(int nums[], int y) {

int z = nums| ?]
Z -= ?

J
Z >>= ? ;
return ? ;

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

X

//
//
//
//
//

?
. 5

copy y into %eax

multiply %eax by nums[O]
subtract nums[1] from %eax
shift %eax right by 2

add 2 to %eax

34

Reverse Engineering 2

int elem_arithmetic(int nums[], int y) {

int z = nums[@] * y;
Zz -= nums[1];

Z >>= 2;

return z + 2;

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

//
//
//
//
//

copy y into %eax

multiply %eax by nums[O]
subtract nums[1] from %eax
shift %eax right by 2

add 2 to %eax

35

Reverse Engineering 3

long func(long x, long *ptr) {

*ptr = ? + 1;
long result = x % ? 5
return ? ;
}
// X in %rdi, ptr 1in %rsi
func:

movq %rdi, %rax
leag 1(%rdi), %rcx
movq %rcx, (%rsi)
cqgto

idivg %rcx

movq %rdx, %rax
ret

https://godbolt.org/z/hGKPWszq4 N

https://godbolt.org/z/hGKPWszq4

Reverse Engineering 3

long func(long x, long *ptr) {

*ptr = ? + 1;
long result = x % ? 5
return ? ;
}
// X in %rdi, ptr 1in %rsi
func:
movq %rdi, %rax // copy X into Z%rax
leag 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax

ret

37

Reverse Engineering 3

long func(long x, long *ptr) {
*ptr = X + 1;
long result = x % *ptr; // or x + 1
return result;

}
// X in %rdi, ptr 1in %rsi
func:
movq %rdi, %rax // copy X into Z%rax
leag 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax

ret

38

Side Note: Old GCC Output

long func(long x, long *ptr) {
*ptr = X + 1;
long result = x % *ptr; // or x + 1
return result;

}
// X in %rdi, ptr 1in %rsi
func:
leag 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
movq %rdi, %rax // copy x into %rax
cqto // sign-extend x into %rdx
idivg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax

ret

39

