
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 18
Assembly: Control Flow

Reading: B&O 3.6

😷 masks recommended

While you’re getting situated:
grab a handout and reference
sheet in the front or back!

2

Warm-up: Reverse Engineering
int elem_arithmetic(int nums[], int y) {

int z = nums[________] * ________;

z -= ________;

return ________;
}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax
imull 4(%rdi), %eax
movslq %esi, %rsi
subl (%rdi,%rsi,4), %eax
lea 2(%rax, %rax), %eax
ret

3

Warm-up: Reverse Engineering
int elem_arithmetic(int nums[], int y) {

int z = nums[1] * y;

z -= ________;

return ________;
}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull 4(%rdi), %eax // multiply %eax by nums[1]
movslq %esi, %rsi // sign-extend %esi to %rsi
subl (%rdi,%rsi,4), %eax
lea 2(%rax, %rax), %eax
ret

Work through the last two blanks
in groups and input your answer
for the first blank on PollEv:
pollev.com/cs107 or text CS107 to
22333 once to join.

4

Warm-up: Reverse Engineering
int elem_arithmetic(int nums[], int y) {

int z = nums[1] * y;

z -= nums[y];

return 2 * z + 2;
}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull 4(%rdi), %eax // multiply %eax by nums[1]
movslq %esi, %rsi // sign-extend %esi to %rsi
subl (%rdi,%rsi,4), %eax // subtract nums[y] from %eax
lea 2(%rax, %rax), %eax // multiply %rax by 2, and add 2
ret

5

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

This Lecture

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

6

Learning Goals
• Understand how assembly implements loops and control flow
• Learn about how assembly stores comparison and operation results in

condition codes

7

Lecture Plan
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

8

Lecture Plan
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

9

Executing Instructions

What does it mean for a program
to execute?

10

Executing Instructions
So far:
• Program values can be stored in memory or registers.
• Assembly instructions read/write values back and forth

between registers (on the CPU) and memory.
• Assembly instructions are also stored in memory.

Today:
• Who controls the instructions?

How do we know what to do now or next?
Answer:
• The program counter (PC), %rip.

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

11

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

12

Instructions Are Just Bytes!

13

Instructions Are Just Bytes!

14

Instructions Are Just Bytes!

0x0

Heap

Stack

Data

Text (code)
Machine code

instructions

Main Memory

15

%rip
00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Heap

Stack

Data

Text (code)

Main Memory

16

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ed

%rip

17

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ee

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

18

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f1

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

19

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f8

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

20

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

21

%rip

Special hardware sets the program counter
to the next instruction:
%rip += size of bytes of current instruction

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

22

Going In Circles
How can we use this representation of execution to represent e.g. a loop?
• Key Idea: we can ”interfere” with %rip and set it back to an earlier instruction!

23

Jump!

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

24

Jump!

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

25

Jump!

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

26

Jump!

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

27

Jump!

This assembly represents an
infinite loop in C!

while (true) {…}

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

28

jmp
The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
jmp 404f8 <loop+0xb> # jump to instruction at 0x404f8

The destination can also be one of the usual operand forms (indirect jump):
jmp *%rax # jump to instruction at address in %rax

29

“Interfering” with %rip

1. How do we repeat instructions in a loop?
jmp [target]
• A 1-step unconditional jump (always

jump when we execute this instruction)

What if we want a conditional jump?

30

Lecture Plan
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

31

Control
• In C, we have control flow statements like if, else, while, for, etc. to write

programs that are more expressive than just one instruction following another.
• This is conditional execution of statements: executing statements if one

condition is true, executing other statements if one condition is false, etc.
• How is this represented in assembly?

32

Control

if (x > y) {
// a

} else {
// b

}

In Assembly:
1. Calculate the condition result
2. Based on the result, go to a or b

33

Control
• In assembly, it takes more than one instruction to do these two steps.
• Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:
1. cmp S1, S2 // compare two values
2. je [target] or jne [target] or jl [target] or ... // conditionally jump

“jump if
equal”

“jump if
not equal”

“jump if
less than”

34

Conditional Jumps
There are also variants of jmp that jump only if certain conditions are true
(“Conditional Jump”). The jump location for these must be hardcoded into the
instruction.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)

jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)

jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=)

35

Control
Read cmp S1,S2 as “compare S2 to S1”:

// Jump if %edi > 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
cmp $1, %edi
jle [target]

Wait a minute – how does the jump instruction know anything about the
compared values in the earlier instruction?

36

Control
• The CPU has special registers called condition codes that are like “global

variables”. They automatically keep track of information about the most
recent arithmetic or logical operation.

• cmp compares via calculation (subtraction) and info is stored in the condition codes
• conditional jump instructions look at these condition codes to know whether to jump

• What exactly are the condition codes? How do they store this information?

37

Condition Codes
Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Most common condition codes:
• CF: Carry flag. The most recent operation generated a carry out of the most

significant bit. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most recent operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two’s-complement

overflow-either negative or positive.

38

Setting Condition Codes
The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 – S1

Instruction Description

cmpb Compare byte

cmpw Compare word

cmpl Compare double word

cmpq Compare quad word

39

Conditional Jumps
Conditional jumps can look at subsets of the condition codes in order to check
their condition of interest.

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (ZF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)

ja Label jnbe Above (unsigned >) (CF = 0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF = 1)

jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

40

Setting Condition Codes
The different conditional jumps look at appropriate combinations of condition
codes to know whether the condition it cares about is true.
• E.g. je (“jump equal”) really checks if the ZF (zero flag) is 1
• E.g. jns (“jump not signed”) really checks if the SF (sign flag) is 1
• E.g. jl (“jump less than”) really checks if SF (sign flag) != OF (overflow flag)

• SF = 1 and OF = 0 means no signed overflow, and the result was negative
• SF = 0 and OF = 1 means signed overflow, and the result was positive, meaning it

overflowed from the negative direction.

41

Control

// Jump if %edi > 2
// calculates %edi – 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
// calculates %edi – 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
// calculates %edi – 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
// calculates %edi – 1
cmp $1, %edi
jle [target]

Read cmp S1,S2 as “compare S2 to S1”. It calculates S2 – S1 and updates the
condition codes with the result.

42

Setting Condition Codes
Usually when cmp is paired with conditional jumps, we can read them together.
But other instructions use the condition codes in different ways. Example:
The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1

Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

Instruction Description

testb Test byte

testw Test word

testl Test double word

testq Test quad word

43

The test Instruction
• TEST S1, S2 is S2 & S1

test %edi, %edi
jns …

%edi & %edi is nonnegative
%edi is nonnegative

44

Condition Codes
• Previously-discussed arithmetic and logical instructions update these flags. lea

does not (it was intended only for address computations).
• Logical operations (xor, etc.) set carry and overflow flags to zero.
• Shift operations set the carry flag to the last bit shifted out and set the

overflow flag to zero.
• For more complicated reasons, inc and dec set the overflow and zero flags, but

leave the carry flag unchanged.

45

Recap
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

Lecture 18 takeaway: We
represent control flow in assembly
by storing information in condition
codes and having instructions that
act differently depending on the
condition code values.
Conditionals commonly use cmp
or test along with jumps to
conditionally skip over assembly
instructions.

