CS107, Lecture 22

Privacy and Trust + Heap Allocators

Reading: B&0 9.9, 9.11

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: 2 Creative Commons Attribution 2.5 License. All rights reserved.

‘u l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

Learning Goals

* Learn about the connections between privacy, security and trust
* Learn the restrictions, goals and assumptions of a heap allocator
* Understand the conflicting goals of utilization and throughput

Lecture Plan

* Privacy and Trust

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

Lecture Plan

* Privacy and Trust

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

Privacy and Trust

* Our learning about assembly and program execution helps us better
understand computer security (the protection of data, devices, and networks
from disruption, harm, theft, unauthorized access or modification).

 Computer security is important in part because it enables privacy.

* In understanding computer security, it’s essential to understand the context in
which it comes up (privacy and trust).

Data Breaches

Privacy/trust example: data breaches
* California list of data security breaches: link
* How does a data breach make a customer feel?

https://oag.ca.gov/privacy/databreach/list

What is privacy? 4 possible framings in two categories:

Individualist: the value of privacy as an individual right

* Privacy as control of information — controlling how our private information is
shared with others.

* Privacy as autonomy — capacity to choose/decide for ourselves what is
valuable.

Social: the value of privacy for a group
* Privacy as social good — social life would be unlivable without privacy.
* Privacy (protection) as based in trust — privacy enables trusting relationships

Privacy as control of information — controlling how our
information is communicated to others.

* Consent requires free choice with available alternatives and informed
understanding of what is being offered.

* How many of you just skip past the terms of service for new online services
you sign up for?

* Do you feel in control of your information with the services you choose to use?
Why or why not? If you’re working on a service, how can you respect privacy
while achieving product goals?

e Control over personal data being collected (e.g. data exports from services you
use, privacy dashboards, device privacy protections)

Privacy as autonomy — capacity to choose/decide for
ourselves what is valuable.

* Links to autonomy over our own lives and our ability to lead them as we
choose.

* Do you feel that your autonomy is always respected when using products and
services? Why or why not?

“[P]rivacy is valuable because it acknowledges our respect for persons as
autonomous beings with the capacity to love, care and like—in other words,
persons with the potential to freely develop close relationships” (Innes 1992)

Individualist Models of Privacy

Privacy as autonomy and privacy as control over information
focus the value of privacy at an individual level.

* Individual privacy can conflict with interests of society or the state.

* Many debates over "privacy vs. security” — whether one should be sacrificed
for the other

* Apple v. FBI case re: unlocking iPhones (link)
* Debates around encryption (link)

* Where do your beliefs fall in balancing privacy and security? When (if at all) is
it ok to sacrifice one, and how much?

10

https://www.cnbc.com/2016/03/29/apple-vs-fbi-all-you-need-to-know.html
https://www.nytimes.com/2019/11/19/technology/end-to-end-encryption.html

Privacy as social good — social life would be unlivable without
privacy.

* Privacy has a social value in bringing about the kind of society we want to live
In.

 What would society look like without privacy?

11

Privacy (protection) as based in trust — privacy enables
trusting relationships

* Privacy may help enable trusting relationships essential for cooperation.

* For instance, a fiduciary: someone who stands in a legal or ethical relationship of trust
with another person (or group). The fiduciary must act for the benefit of and in the best
interest of the other person. E.g. tax filer with access to your bank account

* Should anyone who has access to personal info have a fiduciary responsibility? (Richards & Hartzog
2020).

* This model of privacy stresses the essential relationship of trust placed in any
holder of personal data and the responsibilities that result from this trust.

12

Models of Privacy

Individualist
Models

Social Models
of Privacy

Privacy as Privacy as a
Control over Social Good
Information

Privacy as
Respect for
Autonomy

Privacy as based on
Trust

13

Who Should We Trust?

Both security and privacy rely on trusted people (who administer security,
perform penetration tests, submit vulnerabilities to databases, or keep private
information secret). The final piece of the security puzzle is understanding trust.

Trust = Reliance + Risk of Betrayal

What makes trust unique to relationships between people is that trust exposes
one to being betrayed or being let down (Baier 1986).

14

Penetration Testing & Trust

Penetration testing is the practice of encouraging or hiring security researchers
/ contractors to find vulnerabilities in one’s own code or system.

* Position of trust — tester is given access to the system and encouraged to find
exploitable vulnerabilities, expected to share what they have found with you.

* Means relying on their skill at finding vulnerabilities and trusting that their
ethical compass will lead them to tell you and to act as a trustworthy fiduciary
(guardian of your interests).

In Assignment5, you will have the opportunity to test your own ethical compass!

15

Loss of Privacy

Loss of privacy can cause us various harms, including:

* Aggregation: combining personal information from various sources to build a
profile of someone

e Exclusion: not knowing how our information is being used, or being unable to
access or modify it (Google removing personal info from search — link)

e Secondary Use: using your information for purposes other than what was
intended without permission.

16

https://mashable.com/article/how-to-remove-personal-info-from-google-search-results

Mitigation: Differential Privacy

Differential privacy is a formal measure of privacy for datasets to try and
protect individuals from aggregation by making them harder to identify (Dwork
2008).

* Imagine a large database, e.g., a medical database, with personal information
and records of past activity tied to a name.

* The records might be useful for research purposes, or to train a machine
learning model to predict future health outcomes, but what if giving access to

the records exposed the privacy of individual person’s health records?

e Differential privacy adds inconsequential noise (e.g., changing a birthday from
2001 to 2002) or removes records to make individuals harder to identify while
preserving the utility of the dataset overall.

17

Trust Models

In every evaluation of privacy, we can ask: who is trusted? Who is distrusted?
Does this model concentrate trust (and therefore power) in a single individual or
small group, or does it distribute trust?

18

Differential Privacy’s Trust Model

Differential privacy assumes that the only threat to privacy is an external user
querying the database who must be prevented from aggregating data that could
identify a user.

* In other words, the trust model of differential privacy is that the database
owners and maintainers are to be fully trusted, and no one else.

e But is that the only threat? Differential privacy does not protect against
improper use by people with full access to data or against leaks of the whole
database, which may be the primary data exposure risks.

Differential privacy also does not question the assumption that amassing &
storing large amounts of personal data is worth the risk of inevitable leaks
(Rogaway 2015).

19

Lecture Plan

* Privacy and Trust

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

20

CS107 Topic 6: How do the
core malloc/realloc/free

memory-allocation
operations work?

CS107 Topic 6

How do the core malloc/realloc/free memory-allocation operations work?

Why is answering this question important?

* Combines techniques from across the quarter (bits/bytes, pointers, memory,
generics, assembly, efficiency, testing, and more) to understand a real-world
system that you have relied on all quarter!

* Learning about the design and tradeoffs in a real-world large system gives us a
great example of how to evaluate different designs when there’s no one
“right” answer.

assign6: implement two different possible designs for a heap allocator, implementing
malloc/realloc/free.

22

Running a program

* Creates new process Main Memory
OX7ffffffff0000

* Sets up address space/segments

* Read executable file, load instructions, global data

Mapped from file into gray segments .
Ox7 770000 Shared library text/data

e Libraries loaded on demand

* Set up stack
Reserve stack segment, init %rsp, call main 0x60000

Global data

 malloc written in C, will init self on use
Asks OS for large memory region, Oxa0000 ot (machine code)
. I —
parcels out to service requests

23

The Stack

Main Memory

Ox7ffffffff0000

away” after function

call ends.
Ox7ffff770000

Automatically managed
at compile-time by gcc

Heap From Assembly:
RS S — Stack management ==
Global data

| moving %rsp around
Text (machine code)
OX 4000 e — (pushq, POpPq, mov)

24

Today: The Heap

Main Memory

Ox7ffffffff0000

Shared library text/data

Ox7ffff770000

Heap

0x60000 e

Global data

Text (machine code)
OX 4000 e —

:|_

Heap memory persists
until caller indicates it
no longer needs it.

Managed by C standard
library functions
(malloc, realloc, free)

This lecture:
How does heap
management work?

25

Lecture Plan

* Privacy and Trust

* The heap so far

 What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

26

Your role so far: Client

void *malloc(size t size);

Returns a pointer to a block of heap memory of at least size bytes, or
NULL if an error occurred.

void free(void *ptr);
Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size t size);

Changes the size of the heap-allocated block starting at the specified
address to be the new specified size. Returns the address of the new,
larger allocated memory region.

27

Your role now: Heap Hotel Concierge

(aka Heap Allocator)
http://screencrave.com/wp-content/uploads/2014/03/the-grand-budapest-hotel-

anderson-image-2.jpg

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE

29

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 1: Hi! May |
please have 2 bytes of

Allocator: Sure, I've given

you address 0x10.

heap memory?

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE

30

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 1: Hi! May |
please have 2 bytes of

Allocator: Sure, I've given

you address 0x10.

heap memory?

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 1 AVAILABLE

31

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 2: Howdy! May |
please have 3 bytes of

Allocator: Sure, I've given

you address Ox12.

heap memory?

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 1 AVAILABLE

32

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 2: Howdy! May |
please have 3 bytes of

Allocator: Sure, I've given

you address Ox12.

heap memory?

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

33

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 1: I'm done with Allocator: Thanks. Have a

the memory | requested.

Thank you! gOOd day!

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

34

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 1: I'm done with Allocator: Thanks. Have a

the memory | requested.

Thank you! gOOd day!

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE

35

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 3: Hello there!
I’d like to request 2 bytes

Allocator: Sure thing. I've

of heap memory, please. given you address 0x10.

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE

36

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 3: Hello there!
I’d like to request 2 bytes

Allocator: Sure thing. I've

of heap memory, please. given you address 0x10.

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

37

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 3: Hi again! I'd

[] 1 ’
ke to request the region Allocator: Sure thing. I've

of memory at 0x10 be given you address 0x15.

reallocated to 4 bytes.

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

38

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 3: Hi again! I'd

[] 1 ’
ke to request the region Allocator: Sure thing. I've

of memory at 0x10 be given you address 0x15.

reallocated to 4 bytes.

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE FOR REQUEST 2 FOR REQUEST 3 AVAILABLE

39

Lecture Plan

* Privacy and Trust

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

40

Heap Allocator Functions

void *malloc(size t size);
void free(void *ptr);

void *realloc(void *ptr, size t size);

41

Heap Allocator Requirements

A heap allocator must...

1.

A S

Handle arbitrary request sequences of allocations and frees

Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Return addresses that are 8-byte-aligned (must be multiples of 8).

42

Heap Allocator Requirements

A heap allocator must...

1.

A S

Handle arbitrary request sequences of allocations and frees
Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator cannot assume anything about the order of allocation

and free requests, or even that every allocation request is accompanied
by a matching free request.

43

Heap Allocator Requirements

A heap allocator must...

1.

A S

Handle arbitrary request sequences of allocations and frees

Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator marks memory regions as allocated or available. It
must remember which is which to properly provide memory to clients.

44

Heap Allocator Requirements

A heap allocator must...

1.

A

Handle arbitrary request sequences of allocations and frees

Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator may have options for which memory to use to fulfill an
allocation request. It must decide this based on a variety of factors.

45

Heap Allocator Requirements

A heap allocator must...

1.

AW

Handle arbitrary request sequences of allocations and frees

Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator must respond immediately to allocation requests and

should not e.g. prioritize or reorder certain requests to improve
performance.

46

Heap Allocator Requirements

A heap allocator must...

1.

i B W

Handle arbitrary request sequences of allocations and frees

Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Return addresses that are 8-byte-aligned (must be multiples of 8).

47

Heap Allocator Goals

* Goal 1: Maximize throughput, or the number of requests completed per unit
time. This means minimizing the average time to satisfy a request.

* Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

48

* The primary cause of poor utilization is fragmentation. Fragmentation occurs
when otherwise unused memory is not available to satisfy allocation requests.

» External Fragmentation (this example): no single space is large enough to satisfy a
request, even though enough aggregate free memory is available

* Internal Fragmentation: space allocated for a block is larger than needed (more later).

* In general: we want the largest address used to be as low as possible.
Allocator: I’'m sorry, |
don’t have a 4 byte block

Request 6: Hi! May |
please have 4 bytes of

heap memory? available...

0x10 Ox11 0x12 Ox13 0x14 0x15 0x16 Ox17 0x18 0x19

Reqg. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

49

Question: Can we / should we shift these blocks down to make more space?

* YES, good idea! Input your answer on PollEv:

* YES, but not a good idea for some reason | pollev.com/cs107 or text CS107 to
* NO, it can’t be done! 22333 once to join.

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

Reqg. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

L

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

Regq.1 | Req.2 | Req.3 | Req.4 | Req.5 Free

50

& When poll is active, respond at pollev.com/cs107

3 Text CS107 to 22333 once to join

Can we shift these blocks down to make more space?

YES, good ideal!

YES, it can be done, but not a
good idea for some reason (e.g.
not efficient use of time)

NO, it can't be done!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Question: Can we / should we shift these blocks down to make more space?

* No - we have already guaranteed these addresses to the client. We cannot
move allocated memory around, since this will mean the client will now have
incorrect pointers to their memory!

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

Regq.1 | Req.2 | Req.3 | Req.4 | Req.5 Free

b2

Heap Allocator Goals

* Goal 1: Maximize throughput, or the number of requests completed per unit
time. This means minimizing the average time to satisfy a request.

* Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

These are seemingly conflicting goals — for instance, it may take longer to better
plan out heap memory use for each request. Heap allocators must find an
appropriate balance between these two goals!

53

Heap Allocator Goals

* Goal 1: Maximize throughput, or the number of requests completed per unit
time. This means minimizing the average time to satisfy a request.

* Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

Other desirable goals:
Locality (“similar” blocks allocated close in space)
Robust (handle client errors)
Ease of implementation/maintenance

54

Lecture Plan

* Privacy and Trust

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
 Method 0: Bump Allocator

55

Bump Allocator

Let’s say we want to entirely prioritize throughput, and do not care about
utilization at all. This means we do not care about reusing memory. How could

we do this?

A bump allocator is a heap allocator design that simply allocates the next
available memory address upon an allocate request and does nothing on a free

request.

56

Bump Allocator Performance

1. Utilization 2. Throughput

Never reuses memory Ultra fast, short routines

Bump Allocator

A bump allocator is a heap allocator design that simply allocates the next

available memory address upon an allocate request and does nothing on a free
request.

* Throughput: each malloc and free execute only a handful of instructions:
* It is easy to find the next location to use
* Free does nothing!

 Utilization: we use each memory block at most once. No freeing at all, so no
memory is ever reused. ®

* We provide a bump allocator implementation as part of assign6 as a code
reading exercise.

58

Bump Allocator

void *a = malloc(8);
void *b = malloc(4);

void *c = malloc(24);

free(b);
void *d = malloc(8);
0x10 0x14 0x18 Ox1lc 0x20 Ox24 Ox28 Ox2cC Ox30 Ox34

AVAILABLE

59

Bump Allocator

void *a = malloc(8);

void *b = malloc(4);

a 0x10
void *c = malloc(24);
free(b);
void *d = malloc(8);
0x10 Ox14 Ox18 Ox1c 0x20 Ox24 Ox28 Ox2c Ox309 Ox34

a AVAILABLE

()}

Bump Allocator

void *a = malloc(8);
void *b = malloc(4); . Ox10
void *c = malloc(24);

free(b); b ox18
void *d = malloc(8);

0x10 0x14 0x18 Ox1c 0x20 0x24 0x28 OX2C 0x30 0x34

a b + padding AVAILABLE

()}

Bump Allocator
void *a = malloc(8);

void *b = malloc(4);

a 0x10
void *c = malloc(24);
free(b); b Ox18
void *d = malloc(8); e Ox20
0x10 Ox14 Ox18 Ox1c 0x20 Ox24 Ox28 Ox2c Ox309 Ox34

a b + padding C

i

Bump Allocator

void *a = malloc(8);
void *b = malloc(4); . Ox10
void *c = malloc(24);

free(b); b Ox18
void *d = malloc(8); C Ox20
0x10 0x14 0x18 Ox1c 0x20 Ox24 Ox28 Ox2cC 0x30 Ox34

a b + padding C

(0)}

Bump Allocator

void *a = malloc(8);
C o own L ,

void *b = malloc(4); . Ox10
void *c = malloc(24);
free(b); b ox18
void *d = malloc(8); C Ox20

d NULL
0x10 0x14 0x18 Ox1c 0x20 0x24 0x28 OX2cC 0x30 0x34

a b + padding C

()}

Summary: Bump Allocator

* A bump allocator is an extreme heap allocator — it optimizes only for
throughput, not utilization.

* Better allocators strike a more reasonable balance. How can we do this?

Questions to consider:
1. How do we keep track of free blocks?

2. How do we choose an appropriate free block in which to place a newly
allocated block?

3. After we place a newly allocated block in some free block, what do we do
with the remainder of the free block?

4. What do we do with a block that has just been freed?

65

* Privacy and Trust Lecture 22 takeaways: Computer

* The heap so far security comes up in discussions of
privacy (individualist and social framings)
and trust (reliance + risk of betrayal).

* Heap allocator requirements and How can we balance privacy and
goals security? How can we mitigate potential

* Method O: Bump Allocator harms?

* What is a heap allocator?

A heap allocator is a set of functions that
fulfills requests for heap memory.
Seemingly-conflicting goals of
maximizing throughput and memory
utilization!

66

