
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 22
Privacy and Trust + Heap Allocators

Reading: B&O 9.9, 9.11

😷 masks recommended

2

Learning Goals
• Learn about the connections between privacy, security and trust
• Learn the restrictions, goals and assumptions of a heap allocator
• Understand the conflicting goals of utilization and throughput

3

Lecture Plan
• Privacy and Trust
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

4

Lecture Plan
• Privacy and Trust
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

5

Privacy and Trust
• Our learning about assembly and program execution helps us better

understand computer security (the protection of data, devices, and networks
from disruption, harm, theft, unauthorized access or modification).
• Computer security is important in part because it enables privacy.
• In understanding computer security, it’s essential to understand the context in

which it comes up (privacy and trust).

6

Data Breaches
Privacy/trust example: data breaches
• California list of data security breaches: link
• How does a data breach make a customer feel?

https://oag.ca.gov/privacy/databreach/list

7

Privacy
What is privacy? 4 possible framings in two categories:
Individualist: the value of privacy as an individual right
• Privacy as control of information – controlling how our private information is

shared with others.
• Privacy as autonomy – capacity to choose/decide for ourselves what is

valuable.

Social: the value of privacy for a group
• Privacy as social good – social life would be unlivable without privacy.
• Privacy (protection) as based in trust – privacy enables trusting relationships

8

Privacy
Privacy as control of information – controlling how our
information is communicated to others.
• Consent requires free choice with available alternatives and informed

understanding of what is being offered.
• How many of you just skip past the terms of service for new online services

you sign up for?
• Do you feel in control of your information with the services you choose to use?

Why or why not? If you’re working on a service, how can you respect privacy
while achieving product goals?
• Control over personal data being collected (e.g. data exports from services you

use, privacy dashboards, device privacy protections)

9

Privacy
Privacy as autonomy – capacity to choose/decide for
ourselves what is valuable.

• Links to autonomy over our own lives and our ability to lead them as we
choose.
• Do you feel that your autonomy is always respected when using products and

services? Why or why not?

“[P]rivacy is valuable because it acknowledges our respect for persons as
autonomous beings with the capacity to love, care and like—in other words,
persons with the potential to freely develop close relationships” (Innes 1992)

10

Individualist Models of Privacy
Privacy as autonomy and privacy as control over information
focus the value of privacy at an individual level.

• Individual privacy can conflict with interests of society or the state.
• Many debates over ”privacy vs. security” – whether one should be sacrificed

for the other
• Apple v. FBI case re: unlocking iPhones (link)
• Debates around encryption (link)

• Where do your beliefs fall in balancing privacy and security? When (if at all) is
it ok to sacrifice one, and how much?

https://www.cnbc.com/2016/03/29/apple-vs-fbi-all-you-need-to-know.html
https://www.nytimes.com/2019/11/19/technology/end-to-end-encryption.html

11

Privacy
Privacy as social good – social life would be unlivable without
privacy.

• Privacy has a social value in bringing about the kind of society we want to live
in.
• What would society look like without privacy?

12

Privacy
Privacy (protection) as based in trust – privacy enables
trusting relationships

• Privacy may help enable trusting relationships essential for cooperation.
• For instance, a fiduciary: someone who stands in a legal or ethical relationship of trust

with another person (or group). The fiduciary must act for the benefit of and in the best
interest of the other person. E.g. tax filer with access to your bank account
• Should anyone who has access to personal info have a fiduciary responsibility? (Richards & Hartzog

2020).

• This model of privacy stresses the essential relationship of trust placed in any
holder of personal data and the responsibilities that result from this trust.

13

Models of Privacy
Individualist
 Models

Social Models
of Privacy

Privacy as
Control over
Information

Privacy as
Respect for
Autonomy

Privacy as a
Social Good

Privacy as based on
Trust

14

Who Should We Trust?
Both security and privacy rely on trusted people (who administer security,
perform penetration tests, submit vulnerabilities to databases, or keep private
information secret). The final piece of the security puzzle is understanding trust.

Trust = Reliance + Risk of Betrayal

What makes trust unique to relationships between people is that trust exposes
one to being betrayed or being let down (Baier 1986).

15

Penetration Testing & Trust
Penetration testing is the practice of encouraging or hiring security researchers
/ contractors to find vulnerabilities in one’s own code or system.
• Position of trust – tester is given access to the system and encouraged to find

exploitable vulnerabilities, expected to share what they have found with you.
• Means relying on their skill at finding vulnerabilities and trusting that their

ethical compass will lead them to tell you and to act as a trustworthy fiduciary
(guardian of your interests).

In Assignment5, you will have the opportunity to test your own ethical compass!

16

Loss of Privacy
Loss of privacy can cause us various harms, including:
• Aggregation: combining personal information from various sources to build a

profile of someone
• Exclusion: not knowing how our information is being used, or being unable to

access or modify it (Google removing personal info from search – link)
• Secondary Use: using your information for purposes other than what was

intended without permission.

https://mashable.com/article/how-to-remove-personal-info-from-google-search-results

17

Mitigation: Differential Privacy
Differential privacy is a formal measure of privacy for datasets to try and
protect individuals from aggregation by making them harder to identify (Dwork
2008).
• Imagine a large database, e.g., a medical database, with personal information

and records of past activity tied to a name.
• The records might be useful for research purposes, or to train a machine

learning model to predict future health outcomes, but what if giving access to
the records exposed the privacy of individual person’s health records?
• Differential privacy adds inconsequential noise (e.g., changing a birthday from

2001 to 2002) or removes records to make individuals harder to identify while
preserving the utility of the dataset overall.

18

Trust Models
In every evaluation of privacy, we can ask: who is trusted? Who is distrusted?
Does this model concentrate trust (and therefore power) in a single individual or
small group, or does it distribute trust?

19

Differential Privacy’s Trust Model
Differential privacy assumes that the only threat to privacy is an external user
querying the database who must be prevented from aggregating data that could
identify a user.
• In other words, the trust model of differential privacy is that the database

owners and maintainers are to be fully trusted, and no one else.
• But is that the only threat? Differential privacy does not protect against

improper use by people with full access to data or against leaks of the whole
database, which may be the primary data exposure risks.

Differential privacy also does not question the assumption that amassing &
storing large amounts of personal data is worth the risk of inevitable leaks
(Rogaway 2015).

20

Lecture Plan
• Privacy and Trust
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

21

CS107 Topic 6: How do the
core malloc/realloc/free

memory-allocation
operations work?

22

CS107 Topic 6
How do the core malloc/realloc/free memory-allocation operations work?

Why is answering this question important?
• Combines techniques from across the quarter (bits/bytes, pointers, memory,

generics, assembly, efficiency, testing, and more) to understand a real-world
system that you have relied on all quarter!
• Learning about the design and tradeoffs in a real-world large system gives us a

great example of how to evaluate different designs when there’s no one
“right” answer.

assign6: implement two different possible designs for a heap allocator, implementing
malloc/realloc/free.

23

Running a program
• Creates new process
• Sets up address space/segments
• Read executable file, load instructions, global data

Mapped from file into gray segments
• Libraries loaded on demand

• Set up stack
Reserve stack segment, init %rsp, call main
• malloc written in C, will init self on use

Asks OS for large memory region,
parcels out to service requests

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

24

The Stack

Stack memory ”goes
away” after function
call ends.

Automatically managed
at compile-time by gcc

From Assembly:
Stack management ==
moving %rsp around
(pushq, popq, mov)

Review

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

25

Today: The Heap

Heap memory persists
until caller indicates it
no longer needs it.

Managed by C standard
library functions
(malloc, realloc, free)

This lecture:
How does heap
management work?

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

26

Lecture Plan
• Privacy and Trust
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

27

Your role so far: Client
void *malloc(size_t size);
 Returns a pointer to a block of heap memory of at least size bytes, or

NULL if an error occurred.

void free(void *ptr);
 Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size_t size);
 Changes the size of the heap-allocated block starting at the specified

address to be the new specified size. Returns the address of the new,
larger allocated memory region.

28

Your role now: Heap Hotel Concierge

http://screencrave.com/wp-content/uploads/2014/03/the-grand-budapest-hotel-
anderson-image-2.jpg

(aka Heap Allocator)

29

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE

30

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 1: Hi! May I
please have 2 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE

31

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 AVAILABLE

Request 1: Hi! May I
please have 2 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x10.

32

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 2: Howdy! May I
please have 3 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x12.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 AVAILABLE

33

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 2: Howdy! May I
please have 3 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x12.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

34

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 1: I’m done with
the memory I requested.

Thank you!

Allocator: Thanks. Have a
good day!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

35

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 1: I’m done with
the memory I requested.

Thank you!

Allocator: Thanks. Have a
good day!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE

36

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hello there!
I’d like to request 2 bytes
of heap memory, please.

Allocator: Sure thing. I’ve
given you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE

37

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hello there!
I’d like to request 2 bytes
of heap memory, please.

Allocator: Sure thing. I’ve
given you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

38

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hi again! I’d
like to request the region

of memory at 0x10 be
reallocated to 4 bytes.

Allocator: Sure thing. I’ve
given you address 0x15.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

39

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hi again! I’d
like to request the region

of memory at 0x10 be
reallocated to 4 bytes.

Allocator: Sure thing. I’ve
given you address 0x15.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 FOR REQUEST 3 AVAILABLE

40

Lecture Plan
• Privacy and Trust
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

41

Heap Allocator Functions
void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

42

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

43

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator cannot assume anything about the order of allocation
and free requests, or even that every allocation request is accompanied
by a matching free request.

44

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator marks memory regions as allocated or available. It
must remember which is which to properly provide memory to clients.

45

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator may have options for which memory to use to fulfill an
allocation request. It must decide this based on a variety of factors.

46

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator must respond immediately to allocation requests and
should not e.g. prioritize or reorder certain requests to improve
performance.

47

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

48

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

49

Utilization
• The primary cause of poor utilization is fragmentation. Fragmentation occurs

when otherwise unused memory is not available to satisfy allocation requests.
• External Fragmentation (this example): no single space is large enough to satisfy a

request, even though enough aggregate free memory is available
• Internal Fragmentation: space allocated for a block is larger than needed (more later).

• In general: we want the largest address used to be as low as possible.

Request 6: Hi! May I
please have 4 bytes of

heap memory?

Allocator: I’m sorry, I
don’t have a 4 byte block

available…

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

50

Utilization
Question: Can we / should we shift these blocks down to make more space?
• YES, good idea!
• YES, but not a good idea for some reason
• NO, it can’t be done!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

Input your answer on PollEv:
pollev.com/cs107 or text CS107 to
22333 once to join.

51

52

Utilization
Question: Can we / should we shift these blocks down to make more space?
• No - we have already guaranteed these addresses to the client. We cannot

move allocated memory around, since this will mean the client will now have
incorrect pointers to their memory!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free

53

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

These are seemingly conflicting goals – for instance, it may take longer to better
plan out heap memory use for each request. Heap allocators must find an
appropriate balance between these two goals!

54

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

Other desirable goals:
Locality (“similar” blocks allocated close in space)

Robust (handle client errors)
Ease of implementation/maintenance

55

Lecture Plan
• Privacy and Trust
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

56

Bump Allocator
Let’s say we want to entirely prioritize throughput, and do not care about
utilization at all. This means we do not care about reusing memory. How could
we do this?

A bump allocator is a heap allocator design that simply allocates the next
available memory address upon an allocate request and does nothing on a free
request.

57

Bump Allocator Performance

1. Utilization

😱

Never reuses memory

2. Throughput

⭐

Ultra fast, short rouones

58

Bump Allocator
A bump allocator is a heap allocator design that simply allocates the next
available memory address upon an allocate request and does nothing on a free
request.
• Throughput: each malloc and free execute only a handful of instructions:

• It is easy to find the next location to use
• Free does nothing!

• Utilization: we use each memory block at most once. No freeing at all, so no
memory is ever reused. L
• We provide a bump allocator implementation as part of assign6 as a code

reading exercise.

59

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

AVAILABLE

60

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a AVAILABLE

Variable Value

a 0x10

61

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding AVAILABLE

62

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

63

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

64

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

d NULL

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

65

Summary: Bump Allocator
• A bump allocator is an extreme heap allocator – it optimizes only for

throughput, not utilization.
• Better allocators strike a more reasonable balance. How can we do this?

Questions to consider:
1. How do we keep track of free blocks?
2. How do we choose an appropriate free block in which to place a newly

allocated block?
3. After we place a newly allocated block in some free block, what do we do

with the remainder of the free block?
4. What do we do with a block that has just been freed?

66

Recap
• Privacy and Trust
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and

goals
• Method 0: Bump Allocator

Lecture 22 takeaways: Computer
security comes up in discussions of
privacy (individualist and social framings)
and trust (reliance + risk of betrayal).
How can we balance privacy and
security? How can we mitigate potential
harms?

A heap allocator is a set of functions that
fulfills requests for heap memory.
Seemingly-conflicting goals of
maximizing throughput and memory
utilization!

