CS107, Lecture 26
Wrap-Up / What’s Next?

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

L: 2 Creative Commons Attribution 2.5 License. All rights reserved.

U l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

Plan For Today

* Recap: Where We’ve Been
* Larger Applications
 What’s Next?

* Q&A

Plan For Today

* Recap: Where We’ve Been

We've covered a /ofin just
10 weeks! Let’'s take a look

back.

Our CS107 Journey

Arrays
Bits and and Heap
Bytes Pointers Generics Allocators
C Strings Stack and Assembly

Heap

Course Overview

Bits and Bytes - How can a computer represent integer numbers?

Chars and C-Strings - How can a computer represent and manipulate more complex data
like text?

Pointers, Stack and Heap — How can we effectively manage all types of memory in our
programs?

Generics - How can we use our knowledge of memory and data representation to write
code that works with any data type?

Assembly - How does a computer interpret and execute C programs?
Heap Allocators - How do core memory-allocation operations like malloc and free work?

Ethics, Privacy, Partiality and Trust - How do we act responsibly in maintaining security,
protecting privacy, and ensuring warranted trust in the systems we build and maintain?

First Day

* hello.c
* This program prints a welcome message
* to the user.
*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

First Day

The command-line is a text-based interface to navigate a computer, instead of a
Graphical User Interface (GUI).

[BON] lectures — -bash — 80x24
e @ Baies INick-Troccolis-MacBook-Pro-2:~ nicktroccoli$ cd Developer/CS107\ Winter\ 18-19/ |
— =1 = INick-Troccolis-MacBook-Pro-2:CS107 Winter 18-19 nicktroccoli$ cd WWW/lectures/
< = @ = v R Q INick-Troccolis-MacBook-Pro-2:lectures nicktroccoli$ 1s]
o 01-lecture.pdf ©05-lecture.pdf 09-lecture.pdf 13-lecture.pdf 17-lecture.pdf
P e N N N e N N 02-lecture.pdf @6-lecture.pdf 10-lecture.pdf 14-lecture.pdf
Al 03-lecture.pdf @7-lecture.pdf 11-lecture.pdf 15-lecture.pdf
© Downloads 04-lecture.pdf ©08-lecture.pdf 12-lecture.pdf 16-lecture.pdf
E Developer 01-lecture.pdf 02-lecture.pdf 03-lecture.pdf 04-lecture.pdf 05-lecture.pdf Nick-Troccolis-MacBook-Pro-2:1lectures nicktroccoli$
@AirDrop
I3 Music | Ny | Ny | o Ny E . N E . Y
= Desktop
Pictures 06-lecture.pdf 07-lecture.pdf 08-lecture.pdf 09-lecture.pdf 10-lecture.pdf
B Movies

@ Recents E - — E E E .~ E . .

m nicktroccoli

iCloud
& iCloud D... @

™ Documents 7 — P —~—
17 items, 386.51 GB available —

11-lecture.pdf 12-lecture.pdf 13-lecture.pdf 14-lecture.pdf 15-lecture.pdf

Graphical User Interface Text-based interface

Bits And Bytes

Key Question: How can a computer represent integer numbers?

0000

1111 0001

1110 0010

1101 0011

4-bit
two's complement
signed integer
representation

1100 0100

Bits And Bytes

Why does this matter?
* Limitations of representation and arithmetic impact programs!
* We can also efficiently manipulate data using bits.

PSY - GANGNAM STYLE (2's AEHY) MV
officialpsy

P D Subscribe -2142584554

+ < . wes | 1‘ ,1

10

Key Question: How can a computer represent and manipulate more complex
data like text?

e Strings in C are arrays of characters ending with a null terminator!

* We can manipulate them using pointers and C library functions (many of which
you could probably implement).

index
Value IHI Iel Ill Ill IOI I’I 1 1 IWI IOI 'P' Ill Idl I!I l\@l

11

Why does this matter?
* Understanding this representation is key to efficient string manipulation.

* This is how strings are represented in both low- and high-level languages!
e C++: https://www.quora.com/How-does-C++-implement-a-string
e Python: https://www.laurentluce.com/posts/python-string-objects-implementation/

12

https://www.quora.com/How-does-C++-implement-a-string
https://www.laurentluce.com/posts/python-string-objects-implementation/

Pointers, Stack and Heap

Key Question: How can we effectively manage all types of memory in our
programs?

* Arrays let us store ordered lists of information.
* Pointers let us pass addresses of data instead of the data itself.

* We can use the stack, which cleans up memory for us, or the heap, which we
must manually manage.

STACK
Address Value

X 0Ox1fe 2

main()

————
e

myFunc() intPtr 0x10

13

Stack And Heap

Why does this matter?

* The stack and heap allow for two ways to store data in
our programs, each with their own tradeoffs, and it’s

crucial to understand the nuances of managing memory
in any program you write!

* Pointers let us pass around references to data efficiency

Ox7ffffffff000

Ox7ffff7ffe000

0x602010

0x600000

0x400000

Stack

Shared library
text/data

Heap

Global data

Text
(machine code)

8MB
reserved

Sized for
library

Grows on
demand

Sized for
executable

Low addresses
deliberately unmapped

14

Key Question: How can we use our knowledge of memory and data
representation to write code that works with any data type?

* We can use void * to circumvent the type system, memcpy, etc. to copy
generic data, and function pointers to pass logic around.

Why does this matter?

* Working with any data type lets us write more generic, reusable code.

* Using generics helps us better understand the type system in C and other
languages, and where it can help and hinder our program.

15

Assembly Language

Key Question: How does a computer interpret and execute C programs?

* GCC compiles our code into machine code instructions executable by our
pProcessor.

* Our processor uses registers and instructions like mov to manipulate data.

16

Assembly Language

Why does this matter?

* We write C code because it is higher level Zlid
and transferrable across machines. But it is it
not the representation executed by the P 1, AL
Computer! Ao ?m bus Memolry bus : B

* Understanding how programs are compiled Bus interface |, | oo wordw
and executed, as well as computer e
architecture, is key to writing performant]DD
programs (e.g. fewer lines of code is not it Expansion slots for
necessarily better). USE Graphics BRRBREEE oo notwork adsptors

controller adapter controller

* We can reverse engineer and exploit S I -, ¢

programs at the assembly level! MBI PRy) nello executable

{»DiSk/, stored on disk

—

17

Heap Allocators

Key Question: How do core memory-allocation operations
like malloc and free work?

* A heap allocator manages a block of memory for the heap and completes
requests to use or give up memory space.

* We can manage the data in a heap allocator using headers, pointers to free
blocks, or other designs

Why does this matter?

* Designing a heap allocator requires making many design decisions to optimize
it as much as possible. There is no perfect design!

* All languages have a “heap” but manipulate it in different ways.

18

Ethics, Privacy, Partiality and Trust

Key Question: How do we act responsibly in maintaining security, protecting
privacy, and ensuring warranted trust in the systems we build and maintain?

Why does this matter?

* Responsible programming involves documentation -- including informative
error messages! -- that allows others to evaluate the reliability of your code.

* Responsible system and program design also requires choosing a trust model
and considering data privacy. This might also require deciding to whom to be
partial.

19

Our CS107 Journey

Arrays
Bits and and Heap
Bytes Pointers Generics Allocators
C Strings Stack and Assembly

Heap

20

CS107 Learning Goals

The goals for CS107 are for students to gain mastery of
- writing C programs with complex use of memory and pointers

- an accurate model of the address space and compile/runtime behavior
of C programs

to achieve competence in

- translating C to/from assembly

- writing programs that respect the limitations of computer arithmetic

- identifying bottlenecks and improving runtime performance

- working effectively in a Unix development environment

- using ethical frameworks and case studies to inform decision-making
and have exposure to

- a working understanding of the basics of computer architecture

21

The C Coding Experience

https://www.youtube.com/watch?v=G7LJCOvJIuU

22

https://www.youtube.com/watch?v=G7LJC9vJluU

Plan For Today

* Larger Applications

23

Plan For Today

* Larger Applications
* CS107 Tools and Techniques
* CS107 Concepts

24

Plan For Today

* Larger Applications
e CS107 Tools and Techniques

25

Tools and Techniques

* Unix and the command line
* Coding Style

* Debugging (GDB)

* Testing (Sanity Check)
 Memory Checking (Valgrind)
* Profiling (Callgrind)

26

Unix And The Command Line

Unix and command line tools are extremely popular tools outside of CS107 for:
* Running programs (web servers, python programs, remote programs...)
* Accessing remote servers (Amazon Web Services, Microsoft Azure, Heroku...)

* Programming embedded devices (Raspberry Pi, etc.)

Our goal for CS107 was to help you become proficient in navigating Unix

27

Coding Style

* Writing clean, readable code is crucial for any computer science project
* Unfortunately, a fair amount of existing code is poorly-designed/documented

Our goal for CS107 was to help you write with good coding style, and
read/understand/comment provided code.

28

Debugging (GDB)

* Debugging is a crucial skill for any computer scientist

e Qur goal for CS107 was to help you become a better debugger
* narrow in on bugs
» diagnose the issue
* implement a fix

* Practically every project you work on will have debugging facilities
e Python: “PDB”
* IDEs: built-in debuggers (e.g. QT Creator, Eclipse)
* Web development: in-browser debugger

29

Testing (Sanity Check)

 Testing is a crucial skill for any computer scientist

e Qur goal for CS107 was to help you become a better tester
* Writing targeted tests to validate correctness
* Use tests to prevent regressions
* Use tests to develop incrementally

30

Memory Checking and Profiling

 Memory checking and profiling are crucial for any computer scientist to
analyze program performance and increase efficiency.

* Many projects you work on will have profiling and memory analysis facilities:
* Mobile development: integrated tools (XCode Instruments, Android Profiler, etc.)
* Web development: in-browser tools

31

Tools

You’ll see manifestations of these tools throughout projects you work on. We
hope you can use your CS107 knowledge to take advantage of them!

Choose a profiling template for: j iPhone XR (12.1) > CS107

CIELLGEM Custom Recent ®
) o\ o © E B
Blank Activity Monit Allocat Core Animation Core Data Count
Energy Log File Activity Game Leaks Metal System Network
Performance Trace

SceneKit System Trace System Usag Time Profiler Zombies

Time Profiler
Performs low-overhead time-based sampling of processes running on the system's CPUs.

32

Plan For Today

* Larger Applications

* CS107 Concepts

33

* C Language

* Bit-Level Representations
* Arrays and Pointers

* Memory Management

* Generics

* Assembly

34

Systems

How do operating systems work? (take CS111!)

* Storing files in filesystems

* Running user programs

e Sharing memory between programs

* Running multiple tasks concurrently with multithreading and multiprocessing

How is a compiler implemented? (take CS143!) [Demo]
* Lexical analysis

* Parsing

e Semantic Analysis

* Code Generation

How can applications communicate over a network? (take CS144!)
* How can we weigh different tradeoffs of network architecture design?
 How can we effectively transmit bits across a network?

35

Machine Learning

Can we speed up machine learning training with reduced precision
computation?

* https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-
generation-of-ai-chips/

* https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/

How can we implement performant machine learning libraries?
* Popular tools such as TensorFlow and PyTorch are implemented using C!
* https://pytorch.org/blog/a-tour-of-pytorch-internals-1/

e https://www.tensorflow.org/guide/extend/architecture

36

https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
https://www.tensorflow.org/guide/extend/architecture

Web Development

How can we efficiently translate Javascript code to machine code?

 The Chrome V8 JavaScript engine converts Javascript into machine code for
computers to execute: https://medium.freecodecamp.org/understanding-the-
core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964

* The popular Node.js web server tool is built on Chrome V8

How can we compile programs into an efficient binary instruction format that
runs in a web browser?

* WebAssembly is an emerging standard instruction format that runs in
browsers: https://webassembly.org

* [DEMO] You can compile C/C++/other languages into WebAssembly for web

execution .

https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://webassembly.org/
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html

Programming Languages / Runtimes

How can programming languages and runtimes efficiently manage memory?
* Manual memory management (C/C++)
» Reference Counting (Swift)

* Garbage Collection (Java)

How can we design programming languages to reduce the potential for
programmer error? (take CS242!)

» Haskell/Swift “Optionals”

How can we design portable programming languages?
* Java Bytecode: https://en.wikipedia.org/wiki/Java bytecode .

https://en.wikipedia.org/wiki/Java_bytecode

How can compilers output efficient machine code instructions for programs?
(take CS143!)

* Languages can be represented as regular expressions and context-free
grammars

* We can model programs as control-flow graphs for additional optimization

39

Security

How can we find / fix vulnerabilities at various levels in our programs? (take
CS155!)

* Understand machine-level representation and data manipulation
* Understand how a computer executes programs

* macOS High Sierra Root Login Bug: https://objective-
see.com/blog/blog 0x24.html

How can we ensure that our systems and networks are secure? (take CS155!)
How can we design internet services that are worthy of trust? (take CS152!)

40

https://objective-see.com/blog/blog_0x24.html
https://objective-see.com/blog/blog_0x24.html

Ethics, Privacy, Partiality and Trust

Why is privacy important? What technical and policy standards should we
strive for in protecting privacy? (take CS 182!)

How can we recognize ethically important decisions as they arise? What
policies ought we to adopt to address these issues? (take CS 181!)

41

Floats and Assembly

e Unfortunately, we couldn’t cover floating point numbers this quarter
* Lecture video from past quarter here!

* An example of tradeoffs in design decisions.

* Importance of thinking through priorities and pros/cons when designing
systems.

42

https://youtu.be/wh3t9KTzVmE

Try Yourself: Float
Arithmetic

Try it yourself:

:=. ./bank 100 1 # deposit
./bank 100 -1 # withdraw
—_— ./bank 100000000 -1 # make bank

./bank 16777216 1 # lose bank

bank.c 43

Plan For Today

e What’s Next?

44

After CS107, you are
prepared to take a variety
of classes in various areas.

What are some options?

Systems

Where Are We?

CS 106B/X

Programming
Abstractions

C BWe are here

CS 107/E

Computer
Organization and
Systems

CS 111

Operating Systems
Principles

CS 103

Mathematical
Foundations of
Computing

CS 109

Intro to Probability
for Computer
Scientists

A 4

CS 161

Design and Analysis
of Algorithms

Aioayl

46

CS107 (or equivalent) builds up and expanded your breadth and depth of
programming experience and techniques and shows you how machines really

work.
CS111 leverages this programming experience to introduce operating systems

and how they work.
What is an operating system?

Jerry Cain

2 S

Nick Troccoli John Ousterhout

47

What is an Operating System?

An operating system (“OS”) is software that allows people to run programs on a
computer.

* Examples: iOS, Android, Windows, macOS, Linux

You may think mostly of the user interface of the operating system, but an
operating system does so much more!

48

What is an Operating System?

The operating system sits between the hardware and user programs. It
manages shared resources and provides functionality for programs to run.

It manages things like:
* Processor (CPU): decides what program gets to do work and for how long

* Memory (RAM): decides what programs get to use what areas of memory
* Hard Drive: decides how the disk is used to store files

User Programs

Operating System

Hardware (memory, hard drive, processor, etc.)

49

What is an Operating System?

* So far, when you’ve written programs, you haven’t had to think about any of
this. That’s the point! The OS is doing its job — it abstracts away complexity
from programs.

* Don’t have to coordinate with other programs for who gets to use what memory
* Don’t have to coordinate with other programs for who gets to run when

* OSes work behind the scenes, but are extremely powerful

 Example: devices with 1 CPU core (common through early 2000s) could really only
execute 1 program at a time! OSes switch very quickly between different tasks to
simulate appearance of multitasking.

 Example: how can every program think it can use every address from NULL to Oxfff...?
OSes tell programs fake (“virtual”) addresses and behind the scenes it maps them to the
actual (“physical”) addresses that it organizes itself.

50

Other Courses

* CS112: Operating Systems Project * CS246: Mining Massive Datasets
* CS140/CS212: Operating Systems * EE108: Digital Systems Design
* CS143: Compilers EE180: Digital Systems Architecture

* CS144: Networking

* CS145: Databases

e CS152: Trust and Safety Engineering

* CS155: Computer and Network Security

* C$166: Data Structures

* CS181: Computers, Ethics, and Public Policy

e CS182: Ethics, Public Policy, and Technological Change

e CS221: Artificial Intelligence 51

Plan For Today

* Q&A

Thank you!

Course Evaluations

We hope you can take the time to fill out the end-quarter CS 107 course
evaluation once it’s available. We sincerely appreciate any feedback you have
about the course and read every piece of feedback we receive. We are always
looking for ways to improve!

Thank yout

54

Q&A: What questions do

you have?
Respond on PollEV

