
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107 Lecture 3
Bits and Bytes; Integer Representations

reading:
Bryant & O’Hallaron, Ch. 2.2-2.3

😷 masks recommended

2

PollEverywhere
• Today we’re doing a “trial run” of using PollEverywhere for poll questions

• Not counted for attendance (that starts Friday), just a chance to get a feel for the system
• Participation info posted on Canvas Gradebook after lecture so you can confirm your

responses were recorded

• Responses not anonymized, but we don’t look at specific responses, just
aggregated results and participation totals
• Visit pollev.stanford.edu to log in (or use the PollEverywhere app) and sign in

with your @stanford.edu email – NOT your personal email!
• You can use any device with a web browser, or download the PollEverywhere

app, or respond via text – however, to respond via text you must first log in
via a web browser and add your phone number to your profile.
• Whenever we reach a poll question in the slides, it will automatically activate

the poll and allow you to respond at pollev.com/cs107.

https://pollev.stanford.edu/

3

CS107 Topic 1: How can a
computer represent integer

numbers?

4

CS107 Topic 1
How can a computer represent integer numbers?

Why is answering this question important?
• Helps us understand the limitations of computer arithmetic (today)
• Shows us how to more efficiently perform arithmetic (next time)
• Shows us how we can encode data more compactly and efficiently (next time)

assign1: implement 3 programs that manipulate binary representations to (1) work
around the limitations of arithmetic with addition, (2) simulate an evolving colony of
cells, and (3) print Unicode text to the terminal.

5

Learning Goals
• Understand the limitations of computer arithmetic and how that can impact

our programs, such as with overflow
• Understand how positive and negative numbers stored in ints, longs, etc. are

represented in binary
• Learn about the binary and hexadecimal number systems and how to convert

between number systems

6

Delta/Comair Airline Holiday Chaos
Case study: Comair/Delta airline had to cancel thousands of flights days before
Christmas due to a system malfunction. An unusually high number of crew
reassignments caused a bug in the system. What happened?

https://arstechnica.com/uncategorized/2004/12/4490-2/

7

Demo: Unexpected
Behavior

cp -r /afs/ir/class/cs107/lecture-code/lect3 .

8

Lecture Plan
• Integer Representations
• Bits and Bytes
• Hexadecimal
• Unsigned Integers
• Signed Integers
• Overflow

9

Lecture Plan
• Integer Representations
• Bits and Bytes
• Hexadecimal
• Unsigned Integers
• Signed Integers
• Overflow

10

Number Representations
• Numeric types are generally a fixed size (e.g. int is 4 bytes). This means there

is a limit to the range of numbers they can store.
• Overflow occurs when we exceed the maximum value or go below the

minimum value of what a numeric type can store. It can cause unintended
bugs! C Declaration Size (Bytes)

int 4
double 8
float 4
char 1
short 2
long 8

12

Number Representations
• Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, … 99999…
• Signed Integers: negative, positive and 0 integers. (e.g. …-2, -1, 0, 1,… 9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
Look up IEEE floating point if you’re interested!

13

Lecture Plan
• Integer Representations
• Bits and Bytes
• Hexadecimal
• Unsigned Integers
• Signed Integers
• Overflow

14

One Bit At a Time
• A bit is 0 or 1
• Computers are built around the idea of two states: “on” and “off”. Bits

represent this idea in software! (transistors represent this in hardware).
• We can combine bits, like with base-10 numbers, to represent more data. 8

bits = 1 byte.
• Computer memory is just a large array of bytes! It is byte-addressable; you

can’t address (store location of) a bit; only a byte.
• Computers fundamentally operate on bits; but we creatively represent

different data as bits!
• Images
• Video
• Text
• And more…

15

Base 10

5 9 3 4
Digits 0-9 (0 to base-1)

16

Base 10

5 9 3 4
onestens

hundreds

thousands

= 5*1000 + 9*100 + 3*10 + 4*1

17

Base 10

5 9 3 4
100101102103

18

Base 10

5 9 3 4
012310X:

19

Base 2

1 0 1 1
01232X:

Digits 0-1 (0 to base-1)

20

Base 2

1 0 1 1
20212223

21

Base 2

1 0 1 1
onestwosfourseights

= 1*8 + 0*4 + 1*2 + 1*1 = 1110

Most significant bit (MSB) Least significant bit (LSB)

22

Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6?
• Now, what is the largest power of 2 ≤ 6 – 22?
• 6 – 22 – 21 = 0!

_ _ _ _
20212223

10 1 0
= 0*8 + 1*4 + 1*2 + 0*1 = 6

22=4
21=2

23

Practice: Base 2 to Base 10
What is the base-2 value 1010 in base-10?
a) 20
b) 101
c) 10
d) 5
e) Other

24

25

26

27

Byte Values
What is the minimum and maximum base-10 value a single byte (8 bits) can
store? minimum = 0 maximum = ?

11111111
2x: 7 6 5 4 3 2 1 0

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255
• Strategy 2: 28 – 1 = 255

255

28

Multiplying by Base

1450 x 10 = 14500
11002 x 2 = 11000
Key Idea: inserting 0 at the end multiplies by the base!

29

Dividing by Base

1450 / 10 = 145
11002 / 2 = 110
Key Idea: removing 0 at the end divides by the base!

30

Lecture Plan
• Integer Representations
• Bits and Bytes
• Hexadecimal
• Unsigned Integers
• Signed Integers
• Overflow

31

Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011
0-150-150-15

32

Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0-150-150-15

Each is a base-16 digit!

33

Hexadecimal
Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15

34

Hexadecimal

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

35

Hexadecimal
• We distinguish hexadecimal numbers by prefixing them with 0x, and binary

numbers with 0b.
• E.g. 0xf5 is 0b11110101

0x f 5
1111 0101

36

Practice: Hexadecimal to Binary
What is 0x173A in binary?

Hexadecimal 1 7 3 A
Binary 0001 0111 0011 1010

37

Practice: Hexadecimal to Binary
What is 0b1111001010 in hexadecimal? (Hint: start from the right)

Binary 11 1100 1010
Hexadecimal 3 C A

38

Hexadecimal: It’s funky but concise
Let’s take a byte (8 bits):

0b10100101

165

0xa5

Base-10: Human-readable,
but cannot easily interpret on/off bits

Base-2: Yes, computers use this,
but not human-readable

Base-16: Easy to convert to Base-2,
More “portable” as a human-readable format
(fun fact: a half-byte is called a nibble or nybble)

39

Lecture Plan
• Integer Representations
• Bits and Bytes
• Hexadecimal
• Unsigned Integers
• Signed Integers
• Overflow

40

Unsigned Integers
• An unsigned integer is 0 or a positive integer (no negatives).
• We have already discussed converting between decimal and binary, which is a

nice 1:1 relationship. Examples:
0b0001 = 1

0b0101 = 5
0b1011 = 11

0b1111 = 15

• The range of an unsigned number is 0 → 2w - 1, where w is the number of bits.
E.g. a 32-bit integer can represent 0 to 232 – 1 (4,294,967,295).

41

Unsigned Integers

42

From Unsigned to Signed

A signed integer is a negative, 0, or positive
integer. How can we represent both negative
and positive numbers in binary?

43

Lecture Plan
• Integer Representations
• Bits and Bytes
• Hexadecimal
• Unsigned Integers
• Signed Integers
• Overflow

44

Signed Integers
A signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in binary?

Idea: let’s reserve the most
significant bit to store the sign.

45

Sign Magnitude Representation

0110
positive 6

1011
negative 3

46

Sign Magnitude Representation

0000
positive 0

1000
negative 0

🤯

47

Sign Magnitude Representation

We’ve only represented 15 of our 16 available numbers!

1 000 = -0
1 001 = -1
1 010 = -2
1 011 = -3
1 100 = -4
1 101 = -5
1 110 = -6
1 111 = -7

0 000 = 0
0 001 = 1
0 010 = 2
0 011 = 3
0 100 = 4
0 101 = 5
0 110 = 6
0 111 = 7

48

Sign Magnitude Representation
• Pro: easy to represent, and easy to convert to/from decimal.
• Con: +-0 is not intuitive
• Con: we lose a bit that could be used to store more numbers
• Con: arithmetic is tricky: we need to find the sign, then maybe subtract

(borrow and carry, etc.), then maybe change the sign. This complicates the
hardware support for something as fundamental as addition.

Can we do better?

49

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0101
????
0000
+

50

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0101
1011
0000
+

51

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0011
????
0000
+

52

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0011
1101
0000
+

53

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0000
????
0000
+

54

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0000
0000
0000
+

55

A Better Idea
Decimal Positive Negative

0 0000 0000

1 0001 1111

2 0010 1110

3 0011 1101

4 0100 1100

5 0101 1011

6 0110 1010

7 0111 1001

Decimal Positive Negative

8 1000 1000

9 1001 (same as -7!) NA

10 1010 (same as -6!) NA

11 1011 (same as -5!) NA

12 1100 (same as -4!) NA

13 1101 (same as -3!) NA

14 1110 (same as -2!) NA

15 1111 (same as -1!) NA

56

There Seems Like a Pattern Here…

0101
1011
0000
+

0011
1101
0000
+

0000
0000
0000
+

The negative number is the positive number inverted, plus one!

57

There Seems Like a Pattern Here…

A binary number plus its inverse is all 1s. Add 1 to this to carry over all 1s and get 0!

0101
1010
1111
+

1111
0001
0000
+

58

Two’s Complement

59

Two’s Complement
• In two’s complement, we represent a

positive number as itself, and its
negative equivalent as the two’s
complement of itself.
• The two’s complement of a number is

the binary digits inverted, plus 1.
• This works to convert from positive to

negative, and back from negative to
positive!

60

Two’s Complement
• Con: more difficult to represent, and

difficult to convert to/from decimal and
between positive and negative.
• Pro: only 1 representation for 0!
• Pro: all bits are used to represent as

many numbers as possible
• Pro: the most significant bit still indicates

the sign of a number.
• Pro: addition works for any combination

of positive and negative!

61

Two’s Complement
Adding two numbers is just…adding! There is no special case needed for
negatives. E.g. what is 2 + -5?

0010
1011
1101
+

2

-5

-3

63

Lecture Plan
• Integer Representations
• Bits and Bytes
• Hexadecimal
• Unsigned Integers
• Signed Integers
• Overflow

64

Overflow
If you exceed the maximum value of your bit representation, you wrap around
or overflow back to the smallest bit representation.

0b1111 + 0b1 = 0b0000
0b1111 + 0b10 = 0b0001

If you go below the minimum value of your bit representation, you wrap around
or overflow back to the largest bit representation.

0b0000 - 0b1 = 0b1111
0b0000 - 0b10 = 0b1110

65

Min and Max Integer Values
Type

Size
(Bytes)

Minimum Maximum

char 1 -128 127

unsigned char 1 0 255

short 2 -32768 32767

unsigned short 2 0 65535

int 4 -2147483648 2147483647

unsigned int 4 0 4294967295

long 8 -9223372036854775808 9223372036854775807

unsigned long 8 0 18446744073709551615

69

Unsigned Integers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0≈+4billion

Discontinuity
means overflow

possible here

Increasing positive
num

bers

M
or

e
in

cr
ea

si
ng

 p
os

iti
ve

nu
m

be
rs

70

Signed Numbers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0-1

Discontinuity
means overflow

possible here

Increasing positive num
bers

N
eg

at
iv

e
nu

m
be

rs
be

co
m

in
g

le
ss

 n
eg

at
iv

e
(i.

e.
 in

cr
ea

si
ng

)

≈+2billion≈-2billion

+1

71

Overflow In Practice: PSY

YouTube: “We never thought a video would be watched in numbers
greater than a 32-bit integer (=2,147,483,647 views), but that was before
we met PSY. "Gangnam Style" has been viewed so many times we had to
upgrade to a 64-bit integer (9,223,372,036,854,775,808)!” [link]

“We saw this coming a couple months ago and updated our systems to
prepare for it” [link]

https://www.bbc.com/news/world-asia-30288542
https://www.theverge.com/2014/12/3/7325819/gangnam-style-broke-youtube-view-counter

72

Overflow In Practice: Timestamps
Many systems store timestamps as the number of seconds since Jan. 1, 1970 in
a signed 32-bit integer.
• Problem: the latest timestamp that can be represented this way is 3:14:07 UTC

on Jan. 13 2038!

73

Overflow in Practice:
• Pacman Level 256
• Make sure to reboot Boeing Dreamliners every 248 days
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to

remotely execute code
• Donkey Kong Kill Screen

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
http://www.donhodges.com/how_high_can_you_get.htm

74

Demo Revisited: Unexpected Behavior

int main(int argc, char *argv[]) {
short airlineCrewChangesThisMonth = 0;

for (int i = 0; i < 31; i++) {
airlineCrewChangesThisMonth += 1200;
printf(...);

}
}

Comair/Delta airline had to cancel thousands of flights days before Christmas
because of integer overflow – they exceeded 32,768 crew changes (limit of
short).

https://arstechnica.com/uncategorized/2004/12/4490-2/

75

Recap
• Integer Representations
• Bits and Bytes
• Hexadecimal
• Unsigned Integers
• Signed Integers
• Overflow

Next time: How can we manipulate individual bits and bytes?

Lecture 2 takeaway: computers
represent everything in binary.
We must determine how to
represent our data (e.g., base-10
numbers) in a binary format so a
computer can manipulate it.
There may be limitations to these
representations! (overflow)

76

Extra Practice

77

Practice: Two’s Complement
Fill in the below table:

🤔

char x = ____; char y = -x;
decimal binary decimal binary

1. 0b1111 1100

2. 0b0001 1000

3. 0b0010 0100

4. 0b1101 1111

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

78

Practice: Two’s Complement
Fill in the below table:

char x = ____; char y = -x;
decimal binary decimal binary

1. 0b1111 1100

2. 0b0001 1000

3. 0b0010 0100

4. 0b1101 1111

4 0b0000 0100-4

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

🤔

79

Practice: Two’s Complement
Fill in the below table:

char x = ____; char y = -x;
decimal binary decimal binary

1. 0b1111 1100

2. 0b0001 1000

3. 0b0010 0100

4. 0b1101 1111

4

-24

-36

33

0b0000 0100

0b1110 1000

0b1101 1100

0b0010 0001

-4

24

36

-33

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

80

Signed vs. Unsigned Integers

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

81

Underspecified question
What is the following base-2 number in
base-10?

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

0b1101

🤔

82

Underspecified question
What is the following base-2 number in
base-10?

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

0b1101

You need to know the type to determine the
number! (Note by default, numeric constants
in C are signed ints)

If 4-bit signed: -3
If 4-bit unsigned: 13
If >4-bit signed or unsigned: 13

83

Overflow
• What is happening here? Assume 4-bit numbers.

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

🤔

0b1101
0b0100+

84

Overflow
• What is happening here? Assume 4-bit numbers.

0b1101
0b0100+ 0 1

2

8 79
10

15

13
14

11

12 4

5
6

3

Signed

-3 + 4 = 1

No overflow

Unsigned

13 + 4 = 1

Overflow

85

Limits and Comparisons
1. What is

the… Largest unsigned? Largest signed? Smallest signed?

char

int

🤔

86

Limits and Comparisons
1. What is

the…

These are available as
UCHAR_MAX, INT_MIN,
INT_MAX, etc. in the
<limits.h> header.

Largest unsigned? Largest signed? Smallest signed?

char

int

28 - 1 = 255 27 – 1 = 127 -27 = -128

232 - 1 =
4294967296

231 - 1 =
2147483647

-231 =
-2147483648

