CS107 Lecture 3

Bits and Bytes; Integer Representations

reading:
Bryant & O’Hallaron, Ch. 2.2-2.3

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: 2 Creative Commons Attribution 2.5 License. All rights reserved.

‘u l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

PollEverywhere

* Today we’re doing a “trial run” of using PollEverywhere for poll questions
* Not counted for attendance (that starts Friday), just a chance to get a feel for the system

 Participation info posted on Canvas Gradebook after lecture so you can confirm your
responses were recorded

* Responses not anonymized, but we don’t look at specific responses, just
aggregated results and participation totals

e Visit pollev.stanford.edu to log in (or use the PollEverywhere app) and sign in
with your @stanford.edu email — NOT your personal email!

* You can use any device with a web browser, or download the PollEverywhere
app, or respond via text — however, to respond via text you must first log in
via a web browser and add your phone number to your profile.

* Whenever we reach a poll question in the slides, it will automatically activate
the poll and allow you to respond at pollev.com/cs107. 2

https://pollev.stanford.edu/

CS107 Topic 1: How can a
computer represent integer
numbers?

CS107 Topic 1

How can a computer represent integer numbers?

Why is answering this question important?

* Helps us understand the limitations of computer arithmetic (today)

* Shows us how to more efficiently perform arithmetic (next time)

* Shows us how we can encode data more compactly and efficiently (next time)

assign1: implement 3 programs that manipulate binary representations to (1) work
around the limitations of arithmetic with addition, (2) simulate an evolving colony of
cells, and (3) print Unicode text to the terminal.

Learning Goals

e Understand the limitations of computer arithmetic and how that can impact
our programs, such as with overflow

* Understand how positive and negative numbers stored in ints, longs, etc. are
represented in binary

* Learn about the binary and hexadecimal number systems and how to convert
between number systems

Delta/Comair Airline Holiday Chaos

Case study: Comair/Delta airline had to cancel thousands of flights days before
Christmas due to a system malfunction. An unusually high number of crew
reassignments caused a bug in the system. What happened?

https://arstechnica.com/uncategorized/2004/12/4490-2/

Demo: Unexpected
Behavior

cp -r /afs/ir/class/cs107/lecture-code/lect3 .

Lecture Plan

* Integer Representations
* Bits and Bytes

* Hexadecimal

* Unsigned Integers
 Signed Integers

e Overflow

Lecture Plan

* Integer Representations

Number Representations

 Numeric types are generally a fixed size (e.g. int is 4 bytes). This means there
is a limit to the range of numbers they can store.

e Overflow occurs when we exceed the maximum value or go below the
minimum value of what a numeric type can store. It can cause unintended

ues
int
double
float

char

short

o NN B & 00 o

long

10

Number Representations

* Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
* Signed Integers: negative, positive and O integers. (e.g. ...-2, -1, 0, 1,... 9999...)

* Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
— Look up IEEE floating point if you’re interested!

12

Lecture Plan

* Bits and Bytes

13

One Bit At a Time

e AbitisOor1l

 Computers are built around the idea of two states: “on” and “off”. Bits
represent this idea in software! (transistors represent this in hardware).

 We can combine bits, like with base-10 numbers, to represent more data. 8
bits = 1 byte.

 Computer memory is just a large array of bytes! It is byte-addressable; you
can’t address (store location of) a bit; only a byte.

* Computers fundamentally operate on bits; but we creatively represent
different data as bits!
* Images
* Video
* Text

 And more... 14

5934

Digits 0-9 (0 to base-17)

5934

t t t

oS tens ones

=5"1000 + 9*100 + 3*10 + 4*1

16

o
i
),
v
§.
0

10

Digits 0-1 (0 to base-17)

19

Most significant bit (MSB) Least significant bit (LSB)

~ /
1011

eights fours twos ones

=1*8 + 04 + 12 + 1*1 = 11,

21

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:
* What is the largest power of 2 < 6? 22=4

* Now, what is the largest power of 2 < 6—22? 21=2
+ 6-22-21=0!

23 22 2 20
=0"8+1"4+1"2+0"1 =6

22

Practice: Base 2 to Base 10

What is the base-2 value 1010 in base-10?
a) 20

b) 101

c) 10

d) 5

e) Other

23

& When poll is active, respond at pollev.com/[cs107
3 Text CS107 to 22333 once to join

What is the base-10 value 14 in base 2?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

1111

1110

1010

Other

& Poll locked. Responses not accepted.

What is the base-10 value 14 in base 2?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

1111

1110

1010

Other

& Poll locked. Responses not accepted.

What is the base-10 value 14 in base 2?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Byte Values

What is the minimum and maximum base-10 value a single byte (8 bits) can
store? minimum=0 maximum = 255

1111111

e Strategy 1: 1*27 + 1*26 + 1%2> + 1%24 + 1%23+ 1*22 + 1*21 + 1*20 =255
* Strategy 2: 28— 1 = 255

2%

27

Multiplying by Base

1450 x 10 = 14500
1100, x 2 =11000

Key Idea: inserting O at the end multiplies by the base!

Dividing by Base

1450 / 10 = 145
1100, /2 =110

Key Idea: removing 0 at the end divides by the base!

Lecture Plan

e Hexadecimal

30

 When working with bits, oftentimes we have large numbers with 32 or 64 bits.
* Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011

0-15 0-15 0-15

31

 When working with bits, oftentimes we have large numbers with 32 or 64 bits.
* Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0-15 0-15 0-15

Each is a base-16 digit!

32

Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

0123456789 abcdeftf

10 11 12 13 14 15

33

Hexadecimal

Hex digit %) 1 2 3 q 5 6 7
Decimal value (%) 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

34

* We distinguish hexadecimal numbers by prefixing them with @x, and binary
numbers with @b.

* E.g. Oxf5is0bl1110101

Oxft 5
oY

35

Practice: Hexadecimal to Binary

What is @x173A in binary?

Hexadecimal 1 7 3 A
Binary 0001 0111 0011 1010

36

Practice: Hexadecimal to Binary

What is ©b1111001010 in hexadecimal? (Hint: start from the right)

Binary 11 1100 1010
Hexadecimal 3 C A

37

Hexadecimal: It's funky but concise

Let’s take a byte (8 bits):

165

©b10100101

Oxab

Base-10: Human-readable,
but cannot easily interpret on/off bits

Base-2: Yes, computers use this,
but not human-readable

Base-16: Easy to convert to Base-2,

More “portable” as a human-readable format
(fun fact: a half-byte is called a nibble or nybble)

38

Lecture Plan

* Unsigned Integers

39

Unsigned Integers

* An unsigned integer is O or a positive integer (no negatives).

* We have already discussed converting between decimal and binary, which is a
nice 1:1 relationship. Examples:

0b0001 =1
0b0101 = 5
0b1011 = 11
0b1111 = 15

* The range of an unsigned number is 0 - 2% -1, where w is the number of bits.
E.g. a 32-bit integer can represent 0 to 232 -1 (4,294,967,295).

40

Unsigned Integers

15 1

0000

14 1111 0001

1110 0010

1101 0011

4-pit
1100 unsigned integer 0100
representation

41

From Unsigned to Signed

A signed integer is a negative, O, or positive
integer. How can we represent both negative
and positive numbers in binary?

Lecture Plan

* Signed Integers

43

Signhed Integers

A signhed integer is a negative integer, 0, or a positive integer.
* Problem: How can we represent negative and positive numbers in binary?

ldea: let's reserve the most
significant bit to store the sign.

Sign Magnitude Representation

0110
1011
W

negative 3

Sign Magnitude Representation

0000
1000
e

negative O

Sign Magnitude Representation

1000=-0 0000=0
1001=-1 0001=1
1010=-2 0010=2
1011=-3 0011=3
1100=-4 0100=4
1101=-5 0101=5
1110=-6 0110=6
1111=-7 0111=7

We've only represented 15 of our 16 available numbers!

47

Sign Magnitude Representation

* Pro: easy to represent, and easy to convert to/from decimal.
* Con: +-0 is not intuitive
* Con: we lose a bit that could be used to store more numbers

e Con: arithmetic is tricky: we need to find the sign, then maybe subtract
(borrow and carry, etc.), then maybe change the sign. This complicates the
hardware support for something as fundamental as addition.

Can we do better?

48

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

0101
+ 0707077

0000

49

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

o
+1011

0000

50

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

0011
+ 0707077

0000

51

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

S
+1101

0000

52

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

0000
+ 270707

0000

53

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

.
{0000

0000

54

A Better Idea

CRCmTn — EECT—

0000 0000 1000 1000
1 0001 1111 9 1001 (same as -7!) NA
9] 0010 1110 10 1010 (same as -6!) NA
3 0011 1101 11 1011 (same as -5!) NA
4 0100 1100 12 1100 (same as -4!) NA
5 0101 1011 13 1101 (same as -3!) NA
6 0110 1010 14 1110 (same as -2!) NA

7 0111 1001 15 1111 (same as -1!) NA

55

There Seems Like a Pattern Here...

0101 0011 0000
+1011 1101 0000

0000 0000 0000

There Seems Like a Pattern Here...

A binary number plus its eis all 1s. Add 1 to this to all 1s and get 0!

0101 1111
+1010 {0001

1111 0000

Two’'s Complement

0000

1111 0001

1110 0010

1101 0011

4-pit
two's complement
signed integer
representation

1100 0100

58

Two’'s Complement

* In two’s complement, we represent a 1 O 1
positive number as itself, and its
negative equivalent as the two’s 2 1111 9999 o001 2

complement of itself. 0010

1110

* The two’s complement of a number is -3
the binary digits inverted, plus 1.

1101 0011

4-bit
two's complement

* This works to convert from positive to R signed integer 0100 =4
negative, and back from negative to representation
positive! 5 .

-8 59

Two’'s Complement

e Con: more difficult to represent, and
difficult to convert to/from decimal and
between positive and negative.

* Pro: only 1 representation for O!

* Pro: all bits are used to represent as
many numbers as possible

* Pro: the most significant bit still indicates
the sign of a number.

* Pro: addition works for any combination
of positive and negative!

0000

1111 0001

0010

1110

1101 0011

4-pit
two's complement
signed integer
representation

1100 0100

-8 60

Two’'s Complement

Adding two numbers is just...adding! There is no special case needed for

negatives. E.g. what is 2 + -5? 001 O 2
+1 O 1 1 -

1101 -3

61

Lecture Plan

 Overflow

63

If you exceed the maximum value of your bit representation, you wrap around
or overflow back to the smallest bit representation.

©b1111 + 0bl = ©bOOGO
©b1111 + 0blo = ©boOO1

If you go below the minimum value of your bit representation, you wrap around
or overflow back to the largest bit representation.

Oboveo - 0bl = 0©0bllll
ObovoO - 0blo = Ob1110

64

Size

Type (Bytes) Minimum Maximum

char 1 -128 127

unsigned char |1 0 255

short 2 -327768 327677

unsigned short |2 0 65535

int 4 -2147483648 2147483647

unsigned int - 0 4294967295

long 8 -9223372036854775808 9223372036854775807
unsigned long |8 0 18446744073709551615

65

Unsigned Integers

111...111 000...000
111...110 000...001

111...101 000...010
111...100 000...011

Discontinuity
means overflow
possible here

SJoquinu 3ANISOd buisealou|

More increasing positive numbers

100...010 011...101
100...001 011...11
100...000 011...111

69

Sighed Numbers
-1 0

111...111 000...000
110 000...001

000...010
000...011

11...
111...101

111...100

Discontinuity
means overflow
F' 10ssible here

€| m“ 011...101
ﬁ_z 011...11C
o0 011...111
~+2 s n

oillion 70

SJoquinu aANISOd buisealou|

Negative numbers becoming less negative

(i.e. increasing)

Vﬁ?‘
/15'5;’ W?\ \\'i

o~

Overflow In Practice: PSY

PSY - GANGNAM STYLE (Z'&AEHY) MV

—

officialpsy
_ﬁ Pl D Subscrive

+ - , l‘ ,l

-2142584554

YouTube: “We never thought a video would be watched in numbers

greater than a 32-bit integer (=2,147,483,647 views), but that was before
we met PSY. "Gangnam Style" has been viewed so many times we had to
upgrade to a 64-bit integer (9,223,372,036,854,775,808)!” [link]

“We saw this coming a couple months ago and updated our systems to
prepare for it” [link]

/1

https://www.bbc.com/news/world-asia-30288542
https://www.theverge.com/2014/12/3/7325819/gangnam-style-broke-youtube-view-counter

Overflow In Practice: Timestamps

Many systems store timestamps as the number of seconds since Jan. 1, 1970 in
a signed 32-bit integer.

* Problem: the latest timestamp that can be represented this way is 3:14:07 UTC
on Jan. 13 2038!

72

Overflow in Practice:

e Pacman Level 256

* Make sure to reboot Boeing Dreamliners every 248 days

e Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to
remotely execute code

 Donkey Kong Kill Screen

73

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
http://www.donhodges.com/how_high_can_you_get.htm

Demo Revisited: Unexpected Behavior

Comair/Delta airline had to cancel thousands of flights days before Christmas
because of integer overflow — they exceeded 32,768 crew changes (limit of
short).

int main(int argc, char *argv[]) {
short airlineCrewChangesThisMonth = 0;

for (int 1 =0; 1 < 31; 1++) {

airlineCrewChangesThisMonth += 1200;
printf(...);

74

https://arstechnica.com/uncategorized/2004/12/4490-2/

* Integer Representations Lecture 2 takeaway: computers

* Bits and Bytes represent everything in binary.

* Hexadecimal We must determine how to

* Unsigned Integers represent our data (e.g., base-10

» Signed Integers numbers) in a binary format so a

* Overflow computer can manipulate it.
There may be limitations to these
representations! (overflow)

Next time: How can we manipulate individual bits and bytes?

75

Extra Practice

Practice: Two’'s Complement

Fill in the below table: It’s easier to compute

base-10 for positive
numbers, so use two’s
complement first if

char x = ; char y = -X; negative.
decimal binary decimal binary
1. ©ob1111 1100
2. ©0booo1l 1000
3. ©0b0010 0100
4. eb1101 1111 gﬁf

77

Practice: Two’'s Complement

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

Fill in the below table:
char x = 5 char y = -Xx;
decimal binary decimal binary
1. -4 ©bl111 1100 4 9boooO 0100
2. ObovO1 1000
3. ©b0010 0100
4, ©b1101 1111

78

Practice: Two’'s Complement

Fill in the below table:

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

char x = 5 char y = -Xx;
decimal binary decimal binary
-4 ©0bl111 1100 4 9booooO 0100
24 0boOO1 1000 -24 9bl1110 1000
36 ©boo010 0100 -36 ©0bl101 1100
-33 ©bllel 1111 33 0b0010 0001

79

Signed vs. Unsigned Integers

1111 0000 0001

I
1110\ /" 0010
15 0 4

-3 A : 4 3
1101 14 ynsigneg 2 oot1
13 37
-4 1100— 12 4—0100 14
)

-8 80

Underspecified question

What is the following base-2 number in 0 ey,
base-10?) o
1111 2999 oot 2

©bl101)

|
1110\ /0010
15 0 4

-3 A : 4 3
1101 14 ynsigneg 2 oot1
13 37
-4 1100— 12 4—0100 14
_5 5

Underspecified question

What is the following base-2 number in 0 sy,
base-10?) Lo
0000

@bll@l -2 1111 0001

|
1110\ /0010
15 0 4

-3 N\] / 3
1101 14 ynsigneg 2 oot1
If 4-bit signed: -3 13 37
If 4-bit unsigned: 13 -4 — 1100— 12 4 —0100 —+ 4
If >4-bit signed or unsigned: 13
-5 5

You need to know the type to determine the
number! (Note by default, numeric constants
inCare signed ints)

-8 82

 What is happening here? Assume 4-bit numbers. 0 1 Slsy,
Q

©b1101
+ 0b0100

1111 0000 0001

|
1110\ /0010
15 0 4

3 \ : / 3
1101 - 14 uwnsigneq 2 0011
13 37
-4 1100— 12 4—0100 14

 What is happening here? Assume 4-bit numbers. 0 1 Slsy,
Q

0b1101 2 1111 9999 o001 2
+ 0b0100 1110 45 (l) 1/ 0010
— \ /
3 1101\ 14 \“\Signed 2 0011 3
13 37
-4 1100— 12 4—0100 14
Signed Unsigned
-5
-3 +4 =1 13 +4 =1 °
No overflow Overflow

-8 84

Limits and Comparisons

1. What s |
the Largest unsigned? Largest signed? Smallest signed?

char

int

&

85

Limits and Comparisons

1. What s
the...

Largest unsigned? Largest signed? Smallest signed?
char| 28 - 1 = 255 27 - 1 = 127 -27 = -128
int] 232 - 1 = 231 _ 1 = -231 =
4294967296 2147483647 -2147483648

These are available as
UCHAR_MAX, INT_MIN,
INT_MAX, etc. in the
<limits.h> header.

86

