
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107 Lecture 4
Bits and Bytes; Bitwise Operators

reading:
Bryant & O’Hallaron, Ch. 2.1

😷 masks recommended

2

CS107 Topic 1
How can a computer represent integer numbers?

Why is answering this question important?
• Helps us understand the limitations of computer arithmetic (last time)
• Shows us how to more efficiently perform arithmetic (today)
• Shows us how we can encode data more compactly and efficiently (today)

assign1: implement 3 programs that manipulate binary representations to (1) work
around the limitations of arithmetic with addition, (2) simulate an evolving colony of
cells, and (3) print Unicode text to the terminal.

3

Today
Today, we’ll learn about a new set of operators to manipulate bits. For example:

int x = 2;

// NEW: shift all bits X places to the left or right
x = x << 1; // now x is 4!

// NEW: check if the least significant bit is a 0
if (x & 1 == 0) {...

This is useful because we can perform some arithmetic more efficiently, and also
store data more compactly in individual bits.

4

Learning Goals
• Learn about the bitwise C operators and how to use them to manipulate bits
• Understand when to use one bitwise operator vs. another in your program
• Get practice with writing programs that manipulate binary representations

5

Lecture Plan
• Recap and continuing: Integer Representations
• Bitwise Operators
• Bitmasks

6

Lecture Plan
• Recap and continuing: Integer Representations
• Bitwise Operators
• Bitmasks

7

Bits and Bytes So Far
All data, including integer variables, are ultimately stored in memory in binary:

int x = 5; // really 0b0…0101 in memory!

• Unsigned numbers store the direct binary representation of its value
• Signed numbers use two’s complement to store its positive/negative/0 value
• Overflow occurs when we exceed the the minimum or maximum value of the

bit representation – it can cause some funky bugs!

8

Base 10 vs. Binary vs. Hex
• Let’s take a byte (8 bits):

0b10100101

165

0xa5

Base-10: Human-readable,
but cannot easily interpret on/off bits

Base-2: Yes, computers use this,
but not human-readable

Base-16: Easy to convert to Base-2,
More “portable” as a human-readable format
(fun fact: a half-byte is called a nibble or nybble)

9

10000 0000 0000 0001

Overflow
Overflow occurs because we don’t have enough bits to store a value.
E.g. if we have unsigned short x = 65535 and add 2, we get 1!

1111 1111 1111 1111
0000 0000 0000 0010

+

10

Overflow

11

Min and Max Integer Values
In C, there are various constants that represent these minimum and maximum
values: INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX,
ULONG_MAX, …

12

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

int x = 53191;
short sx = x; // -12345!

x = 0000 0000 0000 0000 1100 1111 1100 0111
sx = 1100 1111 1100 0111

13

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

int x = -3;
short sx = x; // still -3

x = 1111 1111 1111 1111 1111 1111 1111 1101
sx = 1111 1111 1111 1101

14

Expanding Bit Representations
Sometimes, we want to carry over a value to a larger variable (e.g. make an int
and set it equal to a short).
• For unsigned values, C adds leading zeros to the representation (“zero

extension”)
• For signed values, C repeats the sign of the value for new digits (“sign

extension”

15

Expanding Bit Representation
If we want to expand the bit size of an unsigned number, C adds leading zeros.

unsigned short s = 4;
unsigned int i = s; // still 4

s = 0000 0000 0000 0100
i = 0000 0000 0000 0000 0000 0000 0000 0100

16

Expanding Bit Representation
If we want to expand the bit size of an signed number, C adds repeats the sign.

short s = -4;
int i = s; // still -4

s = 1111 1111 1111 1100
i = 1111 1111 1111 1111 1111 1111 1111 1100

17

Expanding Bit Representation
If we want to expand the bit size of an signed number, C adds repeats the sign.

short s = 4;
int i = s; // still 4

s = 0000 0000 0000 0100
i = 0000 0000 0000 0000 0000 0000 0000 0100

18

Casting
Casting between variable types can cause tricky issues; the bits remain the
same but are interpreted differently.

short s = -12345;
unsigned short us = (unsigned short)s; // 53191!

Both s and us have the same binary representation: 1100 1111 1100 0111
But its represented value varies depending on how it’s interpreted!

19

Casting

20

Casting
You can cast something to another type by putting that type in parentheses in
front of the value:

int v = -12345;
...(unsigned int)v...

You can also use the U suffix after a number literal to treat it as unsigned:

-12345U

21

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

int x = -1; // 1111 1111 1111 1111 1111 1111 1111 1111
unsigned int y = 0;
if (x < y) { ... // will be false!!

Note: when doing <, >, <=, >= comparison between different size types, it will
promote to the larger type.

22

The sizeof Operator
long sizeof(type);

// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1

sizeof takes a variable type (or a variable itself) as a parameter and returns
the size of that type, in bytes.

23

Lecture Plan
• Recap and continuing: Integer Representations
• Bitwise Operators
• Bitmasks

24

Bitwise Operators
• You’re already familiar with many operators in C:

• Arithmetic operators: +, -, *, /, %
• Comparison operators: ==, !=, <, >, <=, >=
• Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: bitwise operators:
• &, |, ~, ^, <<, >>

25

And (&)
AND is a binary operator. The AND of 2 bits is 1 if both bits are 1, and 0
otherwise.

a b output
0 0 0
0 1 0
1 0 0
1 1 1

output = a & b;

& with 1 to let a bit through, & with 0 to zero out a bit

26

Or (|)
OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

a b output
0 0 0
0 1 1
1 0 1
1 1 1

output = a | b;

| with 1 to turn on a bit, | with 0 to let a bit go through

27

Not (~)
NOT is a unary operator. The NOT of a bit is 1 if the bit is 0, or 1 otherwise.

a output

0 1

1 0

output = ~a;

28

Exclusive Or (^)
Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly one of
the bits is 1, or 0 otherwise.

a b output
0 0 0
0 1 1
1 0 1
1 1 0

output = a ^ b;

^ with 1 to flip a bit, ^ with 0 to let a bit go through

29

Operators on Multiple Bits
When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

30

Bit Operators
int x = 4; // 0000 ... 0100
int y = 5; // 0000 ... 0101

// 4
int anded = x & y; // 0000 ... 0100

// 5
int ored = x | y; // 0000 ... 0101

// -5
int notX = ~x; // 1111 1111 1111 1011

int xored = x ^ y; // what would this give us?

31

32

33

34

Operators on Multiple Bits
When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

Note: these are different from the logical
operators AND (&&), OR (||) and NOT (!).

35

Bit Operators
int x = 4; // 0000 ... 0100
int y = 5; // 0000 ... 0101

// This is checking if x and y are both nonzero
if (x && y) { …

// This is checking if the result of x & y is nonzero
if (x & y) { …

36

Lecture Plan
• Recap and continuing: Integer Representations
• Bitwise Operators
• Bitmasks
• Demo: Bitmasks and GDB
• More practice

37

Bitmasks
We will frequently want to manipulate or isolate out specific bits in a larger
collection of bits. A bitmask is a constructed bit pattern that we can use, along
with bit operators, to do this.

Motivating Example: Bit vectors

38

Bit Vectors and Sets
Instead of using arrays of e.g., Booleans in our programs, sometimes it’s
beneficial to store that information in bits instead – more compact.
• Example: we can represent current courses taken using a char and

manipulate its contents using bit operators.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

39

Bit Vectors and Sets

• How do we find the union of two sets of courses taken? Use OR:

00100011
01100001
01100011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

40

Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken? Use AND:

00100011
& 01100001

00100001

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

41

Bit Masking
Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
00001000
00101011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

42

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS111 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107

43

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS111 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107

44

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses = myClasses & ~CS103; // Remove CS103

45

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses &= ~CS103; // Remove CS103

46

Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010

00000010

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (myClasses & CS106B) {...

// taken CS106B!

47

Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (!(myClasses & CS107)) {...

// not taken CS107!

00100011
& 00001000

00000000

48

Bitwise Operator Tricks
• | with 1 is useful for turning select bits on
• & with 0 is useful for turning select bits off
• | is useful for taking the union of bits
• & is useful for taking the intersection of bits
• ^ is useful for flipping select bits
• ~ is useful for flipping all bits

49

Introducing GDB

Is there a way to step through the
execution of a program and print out its

values as it’s running? E.g., to view
binary representations? Yes!

50

The GDB Debugger
GDB is a command-line debugger, a text-based debugger with similar
functionality to other debuggers you may have used, such as in Qt Creator
• It lets you put breakpoints at specific places in your program to pause there
• It lets you step through execution line by line
• It lets you print out values of variables in various ways (including binary)
• It lets you track down where your program crashed
• And much, much more!

GDB is essential to your success in CS107 this quarter! We’ll be building our
familiarity with GDB over the course of the quarter.

51

Recap
• Recap and continuing: Integer

Representations
• Bitwise Operators
• Bitmasks

Lecture 3 takeaways: We can
use bit operators like &, |, ~, etc.
to manipulate the binary
representation of values. A
number is a bit pattern that can
be manipulated arithmetically or
bitwise at your convenience!

52

Extra Practice

53

Color Wheel
• Another application for storing data efficiently in binary is representing colors.
• A color representation commonly consists of opacity (how transparent or

opaque it is), and how much red/green/blue is in the color.
• Key idea: we can encode each of these in 1 byte, in a value from 0-255! Thus,

an entire color can be represented in one 4-byte integer.

0x 42 53 01 44
Opacity Red Green Blue

54

Demo: Color Wheel

color_wheel.c

55

Hexadecimal and Truncation
For each initialization of x, what will be printed?

i. x = 130; // 0x82

ii. x = -132; // 0xff7c

iii. x = 25; // 0x19

short x = ______;
char cx = x;
printf("%d", cx);

🤔

56

Hexadecimal and Truncation
For each initialization of x, what will be printed?

i. x = 130; // 0x82

ii. x = -132; // 0xff7c

iii. x = 25; // 0x19

-126

124

25

short x = ______;
char cx = x;
printf("%d", cx);

57

Limits and Comparisons
2. Will the following char comparisons evaluate to true or false?

i. -7 < 4

ii. -7 < 4U

iii. (char) 130 > 4

iv. (char) -132 > 2

By default, numeric constants in C are signed ints, unless they are
suffixed with u (unsigned) or L (long).

true

false

false

true

58

Bitwise Warmup
How can we use bitmasks + bitwise operators to…

1. …turn on a particular
set of bits?

🤔

0b00001101

0b00001111 0b00001001

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits?

0b00001011

0b00001101 0b00001101 0b00001101

59

Bitwise Warmup
How can we use bitmasks + bitwise operators to…

1. …turn on a particular
set of bits?

0b00001101

0b00001111 0b00001001

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits?

0b00001011

0b00001101 0b00001101 0b00001101

OR AND XOR

0b00000010 | 0b11111011 & 0b00000110 ^

