CS107 Lecture 4

Bits and Bytes; Bitwise Operators

reading:
Bryant & O’Hallaron, Ch. 2.1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: 2 Creative Commons Attribution 2.5 License. All rights reserved.

‘u l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

CS107 Topic 1

How can a computer represent integer numbers?

Why is answering this question important?

* Helps us understand the limitations of computer arithmetic (last time)

* Shows us how to more efficiently perform arithmetic (today)

* Shows us how we can encode data more compactly and efficiently (today)

assign1: implement 3 programs that manipulate binary representations to (1) work
around the limitations of arithmetic with addition, (2) simulate an evolving colony of
cells, and (3) print Unicode text to the terminal.

Today, we’ll learn about a new set of operators to manipulate bits. For example:

int x = 2;

// NEW: shift all bits X places to the left or right
X = X << 1; // now x 1is 4!

// NEW: check if the least significant bit is a ©
if (x & 1 ==90) {...

This is useful because we can perform some arithmetic more efficiently, and also
store data more compactly in individual bits.

Learning Goals

* Learn about the bitwise C operators and how to use them to manipulate bits
* Understand when to use one bitwise operator vs. another in your program
* Get practice with writing programs that manipulate binary representations

Lecture Plan

* Recap and continuing: Integer Representations
* Bitwise Operators
* Bitmasks

Lecture Plan

* Recap and continuing: Integer Representations

Bits and Bytes So Far

All data, including integer variables, are ultimately stored in memory in binary:
int x = 5; // really 0b0..0101 in memory!

e Unsigned numbers store the direct binary representation of its value
* Signed numbers use two’s complement to store its positive/negative/0 value

* Overflow occurs when we exceed the the minimum or maximum value of the
bit representation — it can cause some funky bugs!

Base 10 vs. Binary vs. Hex

* Let’s take a byte (8 bits):

165

©b10100101

Oxab

Base-10: Human-readable,
but cannot easily interpret on/off bits

Base-2: Yes, computers use this,
but not human-readable

Base-16: Easy to convert to Base-2,

More “portable” as a human-readable format
(fun fact: a half-byte is called a nibble or nybble)

Overflow occurs because we don’t have enough bits to store a value.
E.g. if we have unsigned short x = 65535 and add 2, we get 1!

1111 1111 1111 1111
00O 0V0VO 00O 0010

+ZQ@@@ 00O 000 0001

9

Overflow

0000

1111 0001

1110 0010 1110 0010
13 3 -
1101 0011 3 1101 . 0011 3
4-bit o 4-blt|
12 1100 unsigned integer 0100 + 4 -4 1100 0S C‘;”.”ﬁ sment 0100 —+ 4
representation signed integer
representation
1011 0101
11 5 -5 5
1010 0110
9 7

10

Min and Max Integer Values

In C, there are various constants that represent these minimum and maximum
values: INT MIN, INT MAX, UINT MAX, LONG MIN, LONG MAX,
ULONG_MAX,

11

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

int x = 53191;
short sx = x; // -12345]

X = 0000 0000 0000 0000 1100 1111 1100 0111
1100 1111 1100 0111

SX

12

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

int x = -3;

short sx = x; // still -3

x = 1111 1111 1111 1111 1111 1111 1111 11@1
1111 1111 1111 1191

SX

13

Expanding Bit Representations

Sometimes, we want to carry over a value to a larger variable (e.g. make an int
and set it equal to a short).

* For unsigned values, C adds leading zeros to the representation (“zero
extension”)

* For signed values, C repeats the sign of the value for new digits (“sign
extension”

14

Expanding Bit Representation

If we want to expand the bit size of an unsigned number, C adds leading zeros.

unsigned short s = 4;
unsigned int i = s; // still 4

S = 0000 0000 0000 0100
1 = 0000 0000 0000 00O 00O 00O 0V 0100

15

Expanding Bit Representation

If we want to expand the bit size of an sighed number, C adds repeats the sign.

short s = -4;
int 1 = s; // still -4

S = 1111 1111 1111 1100
i = 1111 1111 1111 1111 1111 1111 1111 1100

16

Expanding Bit Representation

If we want to expand the bit size of an sighed number, C adds repeats the sign.

short s = 4;
int 1 = s; // still 4

S = 0000 0000 0000 0100
1 = 0000 0000 0000 00O 00O 00O 00O 0100

17

Casting between variable types can cause tricky issues; the bits remain the
same but are interpreted differently.

short s = -12345;
unsigned short us = (unsigned short)s; // 53191!

Both s and us have the same binary representation: 1100 1111 1100 0111
But its represented value varies depending on how it’s interpreted!

18

0000

1111 0001

1110 0010

1101 0011

4-bit
two's complement
signed integer
representation

1100 0100

15 1

0000

14 1111 0001

1110 0010

1101 0011

4-pit
1100 unsigned integer 0100
representation

0101

19

You can cast something to another type by putting that type in parentheses in
front of the value:

int v = -12345;
...(unsigned int)v...

You can also use the U suffix after a number literal to treat it as unsigned:

-12345U

20

Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. C will implicitly cast

the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

int x = -1; // 1111 1111 1111 1111 1111 1111 1111 1111
unsigned int y = 0;
if (x <y) { ... // will be false!!

Note: when doing <, >, <=, >= comparison between different size types, it will
promote to the larger type.

21

The sizeof Operator

long sizeof(type);

// Example

long int size bytes = sizeof(int); // 4
long short size bytes = sizeof(short); // 2
long char size bytes = sizeof(char); // 1

sizeof takes a variable type (or a variable itself) as a parameter and returns
the size of that type, in bytes.

22

Lecture Plan

* Bitwise Operators

23

Bitwise Operators

* You're already familiar with many operators in C:
* Arithmetic operators: +, -, *, /, %
 Comparison operators: ==, |=, <, >, <=, >=
* Logical Operators: &&, | |, .

* Today, we’re introducing a new category of operators: bitwise operators:

* &, |, N << >>

) ’ V4

24

AND is a binary operator. The AND of 2 bitsis 1 if both bitsare 1, and O
otherwise.

output = a & b;
a| b output_
7 0 0
0 1 %

1 0 0
1 1 1

& with 1 to let a bit through, & with 0 to zero out a bit

25

OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

output = a | b;
__a_| b output
0 0 0
0 1 1
1 0 1
1 1 1

| with 1 to turn on a bit, | with O to let a bit go through

26

NOT is a unary operator. The NOT of a bitis 1 if the bit is 0, or 1 otherwise.

output = ~a;

= o

0 1
1 0

27

Exclusive Or ()

Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly one of
the bits is 1, or O otherwise.

output = a ~ b;
a_| b output_
7 0 0
0 1 1
1 0 1
1 1 0

A with 1 to flip a bit, » with 0 to let a bit go through

28

Operators on Multiple Bits

When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

AND OR XOR NOT

29

Bit Operators

int x = 4; // 6060660 ... 0100

int y =5; // 66eo ... 0101

/] 4

int anded = x & y; // 0000 ... 0100

// 5

int ored = x | y; // 9000 ... 0101

// -5

int notX = ~x; // 1111 1111 1111 1011

int xored = x * vy; // what would this give us?

30

& When poll is active, respond at pollev.com/[cs107
3 Text CS107 to 22333 once to join

If x=4andy =5, what would x A y be?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

& Poll locked. Responses not accepted.

If x=4andy=5, what would x Ay be?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

& Poll locked. Responses not accepted.

If x=4andy=5, what would x Ay be?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Operators on Multiple Bits

When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

AND OR XOR NOT

Note: these are different from the logical
operators AND (&&), OR (| |) and NOT (!).

34

Bit Operators

4, [/ 0000 ... 0100
5; // 0000 ... 0101

int x
int vy

// This 1is checking if x and y are both nonzero
if (x && y) { ..

// This is checking if the result of x & y is nonzero
if (x & y) { ..

35

Lecture Plan

* Bitmasks

36

We will frequently want to manipulate or isolate out specific bits in a larger

collection of bits. A bitmask is a constructed bit pattern that we can use, along
with bit operators, to do this.

Motivating Example: Bit vectors

37

Bit Vectors and Sets

Instead of using arrays of e.g., Booleans in our programs, sometimes it’s
beneficial to store that information in bits instead — more compact.

* Example: we can represent current courses taken using a char and
manipulate its contents using bit operators.

%) %) 1 %) %) %) 1 1

N) Qo)
© Q Q
N N N S
C)E C)E C)E O C)E

38

Bit Vectors and Sets

%) %) 1 %) %) %) 1 1

9 0] %)
O O O

e How do we find the union of two sets of courses taken? Use OR:

00100011
| 01100001

01100011

39

Bit Vectors and Sets

%) %) 1 %) %) %) 1 1

S S %)
O O O

e How do we find the intersection of two sets of courses taken? Use AND:

00100011
& 01100001

00100001

40

Bit Masking

Example: how do we update our bit vector to indicate we’ve taken CS1077

D S S N\ S " & <
NI & & & O@\Q O%'\Q Q@"Q
00100011
| 00001000

00101011

41

Bit Masking

#define CS106A 0©Ox1 /* 0000 0001 */
#define CS106B 0Ox2 /* 0000 0010 */
#define CS106X 0Ox4 /* 0000 0100 */
#define CS107 0Ox8 /* 0000 1000 */
#define CS111 ©x10 /* 0001 0000 */
#define CS103 0Ox20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 ©Ox860 /* 1000 0000 */
char myClasses = ...;

myClasses = myClasses | CS107; // Add CS107

42

Bit Masking

#C
#C
#C
#C
#C
#C
#C

#c

efine
efine
efine
efine
efine
efine
efine
efine

CS106A
CS106B
CS106X
CS197
CS111
CS103
CS109
CSlel

char myClasses

myClasses |= CSl@7

Ox1
Ox2
x4
OXx8
0x10
0x20
0x40
Ox80

/>I<
/>I<
/>I<
/>I<
/>I<
/>I<
/>I<
/>I<

0000
0000
0000
0000
0001
0010
0100
1000

0001

0010 *
0100 *

1000

00O *
00O *
00O *
00O *

*/
/
/

*/
/
/
/
/

// Add CS107

Bit Masking

* Example: how do we update our bit vector to indicate we’ve not taken C51037?

%) %) 1 %) %) %) 1 1

e & Sk \ S " & <
O%\ O%\ O%\ O@'\ O%\ OG),@ O%,\Q O%\Q
00100011
& 11011111
00000011

char myClasses = ...;
myClasses = myClasses & ~(CS103; // Remove (CS103 4

Bit Masking

* Example: how do we update our bit vector to indicate we’ve not taken C51037?

%) %) 1 %) %) %) 1 1

Q S & N S G & &
KON & & & O@\Q O%'\Q Q@"Q
00100011
& 11011111
00000011

char myClasses = ...;
myClasses &= ~(CS103; // Remove CS103 4

Bit Masking

 Example: how do we check if we've taken CS106B?

%) %) 1 %) %) %) 1 1

N e 0 N A & g &
c?\b 0%,@ c?‘@ 2 C?'\Q c?\g c?\g c?'\Q
00100011
& 00000010
00000010

char myClasses = ...;
if (myClasses & CS106B) {..
// taken CS106B! ”

Bit Masking

* Example: how do we check if we've not taken CS1077?

%) %) 1 %) %) %) 1 1

N e 0 N A & g &
c?\b 0%,@ c?‘@ 2 C?'\Q c?\g c?\g c?'\Q
00100011
& 00001000
00000000

char myClasses = ..
if (! (myClasses & CSl@7)) {..
// not taken CS107! 47

Bitwise Operator Tricks

* | with 1 is useful for turning select bits on

e & with 0 is useful for turning select bits off
* | is useful for taking the union of bits

* & is useful for taking the intersection of bits
» A js useful for flipping select bits

e ~ is useful for flipping all bits

48

Introducing GDB

Is there a way to step through the
execution of a program and print out its
values as it’s running? E.g., to view
binary representations? Yes!

The GDB Debugger

GDB is a command-line debugger, a text-based debugger with similar
functionality to other debuggers you may have used, such as in Qt Creator

° |t
° |t
° |t
° |t

ets you put breakpoints at specific places in your program to pause there
ets you step through execution line by line

ets you print out values of variables in various ways (including binary)

ets you track down where your program crashed

 And much, much more!

GDB is essential to your success in CS107 this quarter! We’ll be building our
familiarity with GDB over the course of the quarter.

50

* Recap and cpntinuing: Integer Lecture 3 takeaways: We can
Representations use bit operators like &, |, ~, etc.

to manipulate the binary

* Bitmasks representation of values. A

number is a bit pattern that can

be manipulated arithmetically or

bitwise at your convenience!

* Bitwise Operators

51

Extra Practice

Color Wheel

* Another application for storing data efficiently in binary is representing colors.

* A color representation commonly consists of opacity (how transparent or
opaque it is), and how much red/green/blue is in the color.

* Key idea: we can encode each of these in 1 byte, in a value from 0-255! Thus,
an entire color can be represented in one 4-byte integer.

Ox 42 53 0144

Opacity Green Blue

53

Demo: Color Wheel

color wheel.c

Hexadecimal and Truncation

For each initialization of x, what will be printed?
. x = 130; // 0x82

. x = -132; // exff7c
short x = ;
char cx = X;
printf("%d", cx);
. x = 25; // ox19

&

55

Hexadecimal and Truncation

For each initialization of x, what will be printed?
-126 I. x = 130; // Ox82

124 ii. x = -132; // oxff7c
short x = ;
char cx = X;
printf("%d", cx);
25 jii. x = 25; // ©x19

56

Limits and Comparisons

2. Will the following char comparisons evaluate to true or false?
. -7 <4 true ii. (char) 130 > 4 false

i, -7 < 4U false v. (char) -132 > 2 true

By default, numeric constants in C are signed ints, unless they are
suffixed with u (unsigned) or L (long).

57

Bitwise Warmup

How can we use bitmasks + bitwise operators to...

©b00001101
1. ..turnonaparticular 2. ..turn off a particular 3. ..flip a particular
set of bits? set of bits? set of bits?
©b00001101 ©b00001101 b0V 1101

6b00001111 0b00001001 0b00001011 ()

58

Bitwise Warmup

How can we use bitmasks + bitwise operators to...

©b00001101
1. ..turnonaparticular 2. ..turn off a particular 3. ..flip a particular
set of bits? (R set of bits? AND set of bits? xoRr
©b00001101 ©b00001101 b0V 1101
©bo00vL0O010 ‘ ©b11111011 & obooovO110 ~

©b00001111 ©b00001001 ©b00vV1011

59

