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CS107 Lecture 4
Bits and Bytes; Bitwise Operators

reading:
Bryant & O’Hallaron, Ch. 2.1

😷 masks recommended
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CS107 Topic 1
How can a computer represent integer numbers?

Why is answering this question important?
• Helps us understand the limitations of computer arithmetic (last time)
• Shows us how to more efficiently perform arithmetic (today)
• Shows us how we can encode data more compactly and efficiently (today)

assign1: implement 3 programs that manipulate binary representations to (1) work 
around the limitations of arithmetic with addition, (2) simulate an evolving colony of 
cells, and (3) print Unicode text to the terminal.
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Today
Today, we’ll learn about a new set of operators to manipulate bits.  For example:

int x = 2;

// NEW: shift all bits X places to the left or right
x = x << 1; // now x is 4!

// NEW: check if the least significant bit is a 0
if (x & 1 == 0) {...

This is useful because we can perform some arithmetic more efficiently, and also
store data more compactly in individual bits.
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Learning Goals
• Learn about the bitwise C operators and how to use them to manipulate bits
• Understand when to use one bitwise operator vs. another in your program
• Get practice with writing programs that manipulate binary representations
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Lecture Plan
• Recap and continuing: Integer Representations
• Bitwise Operators
• Bitmasks



6

Lecture Plan
• Recap and continuing: Integer Representations
• Bitwise Operators
• Bitmasks
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Bits and Bytes So Far
All data, including integer variables, are ultimately stored in memory in binary:

int x = 5; // really 0b0…0101 in memory!

• Unsigned numbers store the direct binary representation of its value
• Signed numbers use two’s complement to store its positive/negative/0 value
• Overflow occurs when we exceed the the minimum or maximum value of the 

bit representation – it can cause some funky bugs!
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Base 10 vs. Binary vs. Hex
• Let’s take a byte (8 bits):

0b10100101

165

0xa5

Base-10: Human-readable,
but cannot easily interpret on/off bits

Base-2: Yes, computers use this,
but not human-readable

Base-16: Easy to convert to Base-2,
More “portable” as a human-readable format
(fun fact: a half-byte is called a nibble or nybble)
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10000 0000 0000 0001

Overflow
Overflow occurs because we don’t have enough bits to store a value.
E.g. if we have unsigned short x = 65535 and add 2, we get 1!

1111 1111 1111 1111
0000 0000 0000 0010

+
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Overflow
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Min and Max Integer Values
In C, there are various constants that represent these minimum and maximum 
values: INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX, 
ULONG_MAX, …
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Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation 
and discards the more significant bits.

int x = 53191;
short sx = x; // -12345!

x = 0000 0000 0000 0000 1100 1111 1100 0111
sx =                     1100 1111 1100 0111
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Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation 
and discards the more significant bits.

int x = -3;
short sx = x; // still -3

x = 1111 1111 1111 1111 1111 1111 1111 1101
sx = 1111 1111 1111 1101
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Expanding Bit Representations
Sometimes, we want to carry over a value to a larger variable (e.g. make an int 
and set it equal to a short).
• For unsigned values, C adds leading zeros to the representation (“zero 

extension”)
• For signed values, C repeats the sign of the value for new digits (“sign 

extension”
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Expanding Bit Representation
If we want to expand the bit size of an unsigned number, C adds leading zeros.

unsigned short s = 4;
unsigned int i = s; // still 4

s =                     0000 0000 0000 0100
i = 0000 0000 0000 0000 0000 0000 0000 0100
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Expanding Bit Representation
If we want to expand the bit size of an signed number, C adds repeats the sign.

short s = -4;
int i = s; // still -4

s =                     1111 1111 1111 1100
i = 1111 1111 1111 1111 1111 1111 1111 1100
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Expanding Bit Representation
If we want to expand the bit size of an signed number, C adds repeats the sign.

short s = 4;
int i = s; // still 4

s =                     0000 0000 0000 0100
i = 0000 0000 0000 0000 0000 0000 0000 0100
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Casting
Casting between variable types can cause tricky issues; the bits remain the 
same but are interpreted differently.

short s = -12345;
unsigned short us = (unsigned short)s;  // 53191!

Both s and us have the same binary representation: 1100 1111 1100 0111
But its represented value varies depending on how it’s interpreted!
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Casting
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Casting
You can cast something to another type by putting that type in parentheses in 
front of the value:

int v = -12345;
...(unsigned int)v...

You can also use the U suffix after a number literal to treat it as unsigned:

-12345U
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Comparisons Between Different Types
Be careful when comparing signed and unsigned integers.  C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming 
both numbers are non-negative.

int x = -1;   // 1111 1111 1111 1111 1111 1111 1111 1111
unsigned int y = 0;
if (x < y) { ...  // will be false!!

Note: when doing <, >, <=, >= comparison between different size types, it will 
promote to the larger type.
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The sizeof Operator
long sizeof(type);

// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char);   // 1

sizeof takes a variable type (or a variable itself) as a parameter and returns 
the size of that type, in bytes.
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Lecture Plan
• Recap and continuing: Integer Representations
• Bitwise Operators
• Bitmasks
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Bitwise Operators
• You’re already familiar with many operators in C:

• Arithmetic operators: +, -, *, /, %
• Comparison operators: ==, !=, <, >, <=, >=
• Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: bitwise operators:
• &, |, ~, ^, <<, >>
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And (&)
AND is a binary operator.  The AND of 2 bits is 1 if both bits are 1, and 0 
otherwise.

a b output
0 0 0
0 1 0
1 0 0
1 1 1

output = a & b;

& with 1 to let a bit through, & with 0 to zero out a bit
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Or (|)
OR is a binary operator.  The OR of 2 bits is 1 if either (or both) bits is 1. 

a b output
0 0 0
0 1 1
1 0 1
1 1 1

output = a | b;

| with 1 to turn on a bit, | with 0 to let a bit go through



27

Not (~)
NOT is a unary operator.  The NOT of a bit is 1 if the bit is 0, or 1 otherwise.  

a output

0 1

1 0

output = ~a;
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Exclusive Or (^)
Exclusive Or (XOR) is a binary operator.  The XOR of 2 bits is 1 if exactly one of 
the bits is 1, or 0 otherwise.

a b output
0 0 0
0 1 1
1 0 1
1 1 0

output = a ^ b;

^ with 1 to flip a bit, ^ with 0 to let a bit go through
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Operators on Multiple Bits
When these operators are applied to numbers (multiple bits), the operator is 
applied to the corresponding bits in each number.  For example: 

0110
& 1100
----
0100

0110
| 1100
----
1110

0110
^ 1100
----
1010

~ 1100
----
0011

AND OR XOR NOT
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Bit Operators
int x = 4;  // 0000 ... 0100
int y = 5;  // 0000 ... 0101

// 4
int anded = x & y; // 0000 ... 0100

// 5
int ored = x | y; // 0000 ... 0101

// -5
int notX = ~x; // 1111 1111 1111 1011

int xored = x ^ y; // what would this give us?
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Operators on Multiple Bits
When these operators are applied to numbers (multiple bits), the operator is 
applied to the corresponding bits in each number.  For example: 

0110
& 1100
----
0100

0110
| 1100
----
1110

0110
^ 1100
----
1010

~ 1100
----
0011

AND OR XOR NOT

Note: these are different from the logical 
operators AND (&&), OR (||) and NOT (!).
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Bit Operators
int x = 4;  // 0000 ... 0100
int y = 5;  // 0000 ... 0101

// This is checking if x and y are both nonzero
if (x && y) { …

// This is checking if the result of x & y is nonzero
if (x & y) { …
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Lecture Plan
• Recap and continuing: Integer Representations
• Bitwise Operators
• Bitmasks
• Demo: Bitmasks and GDB
• More practice
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Bitmasks
We will frequently want to manipulate or isolate out specific bits in a larger 
collection of bits.  A bitmask is a constructed bit pattern that we can use, along 
with bit operators, to do this.

Motivating Example: Bit vectors
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Bit Vectors and Sets
Instead of using arrays of e.g., Booleans in our programs, sometimes it’s 
beneficial to store that information in bits instead – more compact.
• Example: we can represent current courses taken using a char and 

manipulate its contents using bit operators.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1
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Bit Vectors and Sets

• How do we find the union of two sets of courses taken?  Use OR:

00100011
| 01100001
--------
01100011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1
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Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken?  Use AND:

00100011
& 01100001
--------
00100001

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1
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Bit Masking
Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
| 00001000
--------
00101011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1
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Bit Masking
#define CS106A 0x1    /* 0000 0001 */
#define CS106B 0x2    /* 0000 0010 */
#define CS106X 0x4    /* 0000 0100 */
#define CS107  0x8    /* 0000 1000 */
#define CS111  0x10   /* 0001 0000 */
#define CS103  0x20   /* 0010 0000 */
#define CS109  0x40   /* 0100 0000 */
#define CS161  0x80   /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107
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Bit Masking
#define CS106A 0x1    /* 0000 0001 */
#define CS106B 0x2    /* 0000 0010 */
#define CS106X 0x4    /* 0000 0100 */
#define CS107  0x8    /* 0000 1000 */
#define CS111  0x10   /* 0001 0000 */
#define CS103  0x20   /* 0010 0000 */
#define CS109  0x40   /* 0100 0000 */
#define CS161  0x80   /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107
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Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111
--------
00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses = myClasses & ~CS103; // Remove CS103
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Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111
--------
00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses &= ~CS103; // Remove CS103
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Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010
--------
00000010

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (myClasses & CS106B) {...

// taken CS106B!
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Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (!(myClasses & CS107)) {...

// not taken CS107!

00100011
& 00001000
--------
00000000
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Bitwise Operator Tricks
• | with 1 is useful for turning select bits on
• & with 0 is useful for turning select bits off
• | is useful for taking the union of bits
• & is useful for taking the intersection of bits
• ^ is useful for flipping select bits
• ~ is useful for flipping all bits
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Introducing GDB

Is there a way to step through the 
execution of a program and print out its 

values as it’s running?  E.g., to view 
binary representations?  Yes!
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The GDB Debugger
GDB is a command-line debugger, a text-based debugger with similar 
functionality to other debuggers you may have used, such as in Qt Creator
• It lets you put breakpoints at specific places in your program to pause there
• It lets you step through execution line by line
• It lets you print out values of variables in various ways (including binary)
• It lets you track down where your program crashed
• And much, much more!

GDB is essential to your success in CS107 this quarter!  We’ll be building our 
familiarity with GDB over the course of the quarter.
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Recap
• Recap and continuing: Integer 

Representations
• Bitwise Operators
• Bitmasks

Lecture 3 takeaways: We can 
use bit operators like &, |, ~, etc. 
to manipulate the binary 
representation of values.  A 
number is a bit pattern that can 
be manipulated arithmetically or 
bitwise at your convenience!
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Extra Practice
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Color Wheel
• Another application for storing data efficiently in binary is representing colors.
• A color representation commonly consists of opacity (how transparent or 

opaque it is), and how much red/green/blue is in the color.
• Key idea: we can encode each of these in 1 byte, in a value from 0-255!  Thus, 

an entire color can be represented in one 4-byte integer.

0x 42 53 01 44
Opacity Red Green Blue
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Demo: Color Wheel

color_wheel.c
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Hexadecimal and Truncation
For each initialization of x, what will be printed?

i. x = 130;  // 0x82

ii. x = -132; // 0xff7c

iii. x = 25;   // 0x19

short x = ______; 
char cx = x;
printf("%d", cx);

🤔
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Hexadecimal and Truncation
For each initialization of x, what will be printed?

i. x = 130;  // 0x82

ii. x = -132; // 0xff7c

iii. x = 25;   // 0x19

-126

124

25

short x = ______; 
char cx = x;
printf("%d", cx);
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Limits and Comparisons
2. Will the following char comparisons evaluate to true or false?

i. -7 < 4

ii. -7 < 4U

iii. (char) 130 > 4

iv. (char) -132 > 2

By default, numeric constants in C are signed ints, unless they are 
suffixed with u (unsigned) or L (long).

true

false

false

true
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Bitwise Warmup
How can we use bitmasks + bitwise operators to…

1. …turn on a particular
set of bits?

🤔

0b00001101

0b00001111 0b00001001

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits?

0b00001011

0b00001101 0b00001101 0b00001101
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Bitwise Warmup
How can we use bitmasks + bitwise operators to…

1. …turn on a particular
set of bits?

0b00001101

0b00001111 0b00001001

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits?

0b00001011

0b00001101 0b00001101 0b00001101

OR AND XOR

0b00000010 | 0b11111011 & 0b00000110 ^


