
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107 Lecture 5
Bitwise Operators, Continued

reading:
Bryant & O’Hallaron, Ch. 2.1

😷 masks recommended

2

CS107 Topic 1
How can a computer represent integer numbers?

Why is answering this question important?
• Helps us understand the limitations of computer arithmetic (last week)
• Shows us how to more efficiently perform arithmetic (today)
• Shows us how we can encode data more compactly and efficiently (last time)

assign1: implement 3 programs that manipulate binary representations to (1) work
around the limitations of arithmetic with addition, (2) simulate an evolving colony of
cells, and (3) print Unicode text to the terminal.

3

Learning Goals
• Learn about the bit shift operators
• Understand when to use one bitwise operator vs. another in your program
• Get practice with writing programs that manipulate binary representations

4

Lecture Plan
• Recap: Bit Operators so far
• Bit Operators + GDB Demo: Courses
• Demo 2: Powers of 2
• Bit Shift Operators

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

5

Lecture Plan
• Recap: Bit Operators so far
• Bit Operators + GDB Demo: Courses
• Demo 2: Powers of 2
• Bit Shift Operators

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

6

Data is really stored in binary
int x = 5; // really 0b00…0101 in memory!

7

We know what that binary
representation is for integers

int x = 5; // really 0b00…0101 in memory!

int y = -5; // two’s complement: 0b111...11011

unsigned long z = ULONG_MAX; // 0b111...111

8

We can manipulate that binary
representation with bitwise operators

int x = 5; // in binary it’s 0b0000....00101

if ((x & 0x4) != 0) {
printf("x's third bit from the right is on\n");

}

// turn on the 2nd bit from the right
x |= 0x2;

9

Bitwise OR (|)
| with 1 is useful for turning select bits on.

int x = 5; // 0b101

// Turn on the 2nd bit from the right
x |= 0x2; // 0b111

10

Bitwise OR (|)
| is useful for taking the union of bits.

int x = 5; // 0b00101
int y = 26; // 0b11010
int z = x | y; // 0b11111
printf("%d\n", z); // 31

11

Bitwise AND (&)
& with 0 is useful for turning select bits off.

int x = 5; // 0b101

// Turn off the 3rd bit from the right
x &= -5; // -5 is 0b111...1011

12

Bitwise AND (&)
& is useful for taking the intersection of bits.

int x = 21; // 0b10101
int y = 27; // 0b11011
int z = x & y; // 0b10001
printf("%d\n", z); // 17

13

Bitwise XOR (^)
^ with 1 is useful for flipping select bits.

int x = 5; // 0b101

// Flip the 2nd bit from the right
x ^= 2; // 0b111

14

Bitwise NOT (~)
~ is useful for flipping all bits.

int x = 5; // 0b101

// Flip all bits
x = ~x; // 0b11111...1010, which is -6

// Take two’s complement (same as negating)
int y = ~x + 1; // same as -x

15

A variable and its binary
representation are one and the same

int x = 5; // in binary it’s 0b0000....00101

// turn on the 2nd bit from the right
x |= 0x2;

printf("%d\n", x); // prints 7!

16

Bit Vectors and Sets
Instead of using arrays of e.g., Booleans in our programs, sometimes it’s
beneficial to store that information in bits instead – more compact.
• Example: we can represent current courses taken using a char and

manipulate its contents using bit operators.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
111

CS
10
3

CS
10
9

CS
16
1

17

Introducing GDB

Is there a way to step through the
execution of a program and print out its

values as it’s running? E.g., to view
binary representations? Yes!

18

The GDB Debugger
GDB is a command-line debugger, a text-based debugger with similar
functionality to other debuggers you may have used, such as in Qt Creator
• It lets you put breakpoints at specific places in your program to pause there
• It lets you step through execution line by line
• It lets you print out values of variables in various ways (including binary)
• It lets you track down where your program crashed
• And much, much more!

GDB is essential to your success in CS107 this quarter! We’ll be building our
familiarity with GDB over the course of the quarter.
GDB Guide: cs107.stanford.edu/resources/gdb.html

http://cs107.stanford.edu/resources/gdb.html

19

gdb on a program
• gdb myprogram run gdb on executable
• b Set breakpoint on a function (e.g., b main)

or line (b 42)
• r 82 Run with provided args
• n, s, continue control forward execution (next, step into, continue)
• p print variable (p varname) or evaluated expression (p 3L << 10)

• p/t, p/x binary and hex formats.
• p/d, p/u, p/c

• info args, locals

Important: gdb does not run the current line until you hit “next”

20

Demo: Bitmasks and GDB

bitvectors_masks.c

21

gdb: highly recommended
At this point, setting breakpoints/stepping in gdb may seem like overkill for what
could otherwise be achieved by copious printf statements.
However, gdb is incredibly useful for assign1 (and all assignments):
• A fast “C interpreter”: p + <expression>

• Sandbox/try out ideas around bitshift operators, signed/unsigned types, etc.
• Can print values out in binary!
• Once you’re happy, then make changes to your C file

• Tip: Open two terminal windows and SSH into myth in both
• Keep one for emacs, the other for gdb/command-line
• Easily reference C file line numbers and variables while accessing gdb

• Tip: Every time you update your C file, make and then rerun gdb.
Gdb takes practice! But the payoff is tremendous! J

22

Lecture Plan
• Recap: Bit Operators so far
• Bit Operators + GDB Demo: Courses
• Demo 2: Powers of 2
• Bit Shift Operators

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

23

Powers of 2

Challenge: without using loops or math library
functions, let’s write a function is_power_of_2
that can tell us whether a number is a power
of 2.

To start: what is unique about the binary representation of a
power of 2?

Respond with your thoughts on PollEv:
pollev.com/cs107 or text CS107 to 22333 once to join.

24

25

Demo: Powers of 2

is_power_of_2.c

26

Lecture Plan
• Recap: Bit Operators so far
• Bit Operators + GDB Demo: Courses
• Demo 2: Powers of 2
• Bit Shift Operators

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

27

Left Shift (<<)
The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the
left. New lower order bits are filled in with 0s, and bits shifted off the end are
lost.

x << k; // evaluates to x shifted to the left by k bits
x <<= k; // shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000

28

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // evaluates to x shifted to the right by k bits
x >>= k; // shifts x to the right by k bits

Question: how does it fill in the new higher-order bits?

29

Right Shift (>>)
There are two kinds of right shifts, depending on the value and type you are
shifting:

• Unsigned numbers are right-shifted by filling new high-order bits with 0s
(“logical right shift”).

• Signed numbers are right-shifted by filling new high-order bits with the most
significant bit (“arithmetic right shift”).

This way, the sign of the number (if applicable) is preserved!

30

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // evaluates to x shifted to the right by k bit
x >>= k; // shifts x to the right by k bits

unsigned short x = 2; // 0000 0000 0000 0010
x >>= 1; // 0000 0000 0000 0001
printf("%u\n", x); // 1

31

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // evaluates to x shifted to the right by k bit
x >>= k; // shifts x to the right by k bits

short x = 2; // 0000 0000 0000 0010
x >>= 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1

32

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k; // evaluates to x shifted to the right by k bit
x >>= k; // shifts x to the right by k bits

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 1111 1111 1111 1111
printf("%d\n", x); // -1

34

Bit Operator Pitfalls
• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work! 1 is by default an int, and you can’t shift an int by 32
because it only has 32 bits. You must specify that you want 1 to be a long.

long num = 1L << 32;

35

Number Literal Suffixes
U makes a literal unsigned, and L makes a literal a long.

int w = -5 >> 1; // 0b1111...1101, -5
int x = -5U >> 1; // 0b0111...1101, 2147483645

int y = 1 << 32; // 0! (technically undefined)
int z = 1L << 32; // 4294967296

36

Recap
• Recap: Bit Operators so far
• Bit Operators + GDB Demo: Courses
• Demo 2: Practice and Powers of 2
• Bit Shift Operators

Next time: How can a computer represent and manipulate more complex data
like text?

Lecture 5 takeaways: We can
use bit operators like &, |, ~, <<,
etc. to manipulate the binary
representation of values. A
number is a bit pattern that can
be manipulated arithmetically or
bitwise at your convenience!

37

Extra Practice

38

Color Wheel
• Another application for storing data efficiently in binary is representing colors.
• A color representation commonly consists of opacity (how transparent or

opaque it is), and how much red/green/blue is in the color.
• Key idea: we can encode each of these in 1 byte, in a value from 0-255! Thus,

an entire color can be represented in one 4-byte integer.

0x 42 53 01 44
Opacity Red Green Blue

39

Demo: Color Wheel

color_wheel.c

40

Bit Masking
Bit masking is also useful for integer representations as well. For instance, we
might want to check the value of the most-significant bit, or just one of the
middle bytes.

• Example: If I have a 32-bit integer j, what operation should I perform if I want
to get just the lowest byte in j?

int j = ...;
int k = j & 0xff; // mask to get just lowest byte

41

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.

• Practice 2: write an expression that, given a 32-bit integer j, flips
(“complements”) all but the least-significant byte, and preserves all other
bytes.

42

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.
j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips
(“complements”) all but the least-significant byte, and preserves all other
bytes.

j ^ ~0xff

43

More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the

rest of the bits the same)?

long x = 0b1010010;

🤔

44

More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the

rest of the bits the same)?

x & (-1L << i)

long x = 0b1010010;

🤔

45

More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that turns on the i-th bit of a number for any i (0, 1, 2, …, 63)?

long x = 0b1010010;

🤔

46

More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that turns on the i-th bit of a number for any i (0, 1, 2, …, 63)?

x | (1L << i)

long x = 0b1010010;

🤔

