CS107, Lecture 6
C Strings

Reading: K&R (1.9, 5.5, Appendix B3) or Essential
C section 3

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,
uploaded, or distributed. (without expressed written permission)

CS107 Topic 2: How can a

computer represent and

manipulate more complex
data like text?

CS107 Topic 2

How can a computer represent and manipulate more complex data like text?

Why is answering this question important?

* Shows us how strings are represented in C and other languages (this time)
* Helps us better understand buffer overflows, a common bug (this time)

* Introduces us to pointers, because strings can be pointers (next time)

assign2: implement 2 functions a 1 program using those functions to find the location
of different built-in commands in the filesystem. You’'ll write functions to extract a list
of possible locations and tokenize that list of locations.

Learning Goals

* Learn how strings are represented in C; as an array of null-terminated
characters.

* Understand how to use the built-in string functions for common string tasks

* Learn about buffer overflow and what might cause it

Goal: String Diamond

Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.

* For example, diamond ("BAILEY") should print:

B
BA
BAIL
BAIL
BAILE
BAILEY
AILEY
ILEY
LEY
" B T |

 Characters

* Strings

Lecture Plan

* Common String Operations

Comparing
Copying
Concatenating
Substrings

cp -r /afs/ir/class/cs107/lecture-code/lect6 .

 Characters

Lecture Plan

cp -r /afs/ir/class/cs107/lecture-code/lect6 .

A char is a variable type that represents a single character or “glyph”.

char
char
char
char
char
char
char
char

letterA

plus =
Zzero =

space

=
"0

newLine =
l\tl;

singleQuote

tab =

backSlash

Under the hood, C represents each char as an integer (its “ASCIl value”).

* Uppercase letters are sequentially numbered

* Lowercase letters are sequentially numbered

* Digits are sequentially numbered

e Lowercase letters are 32 more than their uppercase equivalents (bit flip!)

char uppercaseA 'A’ // Actually 65

we

char lowercaseA 'a' // Actually 97
char zeroDigit = '0’; // Actually 48

Il
Q

We can take advantage of C representing each char as an integer:

bool areEqual = 'A' == 'A'; // true
bool earlierlLetter = 'f' < '¢'; // false
char uppercaseB = 'A' + 1;

int diff = '¢' - 'a'; // 2

int numLettersInAlphabet = 'z' — 'a' + 1;
// or

int numLettersInAlphabet

Il
N

— 'A" + 1;

10

We can take advantage of C representing each char as an integer:

// prints out every lowercase character
for (char ch = 'a'; ch <= 'z'; ch++) {

°
4

printf("%c", ch);

4

11

Common ctype.h Functions

Function Description

isalpha(ch) |trueifchis 'a' through 'z' or 'A' through 'Z’

islower(ch) |trueifchis 'a' through 'z’

isupper(ch) |trueifchis "A' through 'Z"’

isspace(ch) |trueifchisa space, tab, new line, etc.

isdigit(ch) |trueifchis '@"' through '9"'

toupper(ch) |returns uppercase equivalent of a letter

tolower(ch) |returnslowercase equivalent of a letter

Remember: these return a char; they cannot modify an existing char!
More documentation with man isalpha, man tolower 12

Common ctype.h Functions

bool isLetter = isalpha('A'); // true

bool capital = isupper('f'); // false
char uppercaseB = toupper('b');

bool isADigit = isdigit('4'); // true

13

* Strings

Lecture Plan

cp -r /afs/ir/class/cs107/lecture-code/lect6 .

14

C has no dedicated variable type for strings. Instead, a string is
represented as an array of characters with a special ending sentinel value.

index
Char IHI Iel lll Ill lol I\@l

"Hello"

"\0"' is the null-terminating character; you always need to allocate one extra
space in an array forit. '\@' is the character with numerical value 0.

15

char myString[6];

myString[@] = 'H';
myString[1] = 'e';
myString[2] = '1"';

myString[5] = '\0"';

16

String Length

Strings are not objects. They do not embed additional information (e.g., string
length). We must calculate this!

index
Va/ue IHI Iel Ill Ill IOI I,I 1 1 IWI IOI Ir‘l Ill Idl I!I I\el

We can use the provided strlen function to calculate string length. The null-
terminating character does not count towards the length.

int length = strlen(myStr); // e.g. 13

Caution: strlenis O(N) because it must scan the entire string!
We should save the value if we plan to refer to the length later.

17

C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. C passes the
location of the first character rather than a copy of the whole array.

int doSomething(char *str) {

char myString[6];

doSomething(myString);

18

C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. C passes the
location of the first character rather than a copy of the whole array.

int doSomething(char *str) {

str[@] = 'c'; // modifies original string!
printf("%s\n", str); // prints cello

We can still use a char * the
same way as a char(].

char myString[6];
// e.g. this string is “Hello”
doSomething(myString); 19

Lecture Plan

* Common String Operations

* Comparing

* Copying

* Concatenating
e Substrings

cp -r /afs/ir/class/cs107/lecture-code/lect6 .

20

Common string.h Functions

Function

Description

strlen(str)

returns the # of chars in a C string (before null-terminating character).

strcmp(strl, str2),
strncmp(strl, str2, n)

compares two strings; returns O if identical, <0 if str1 comes before
str2in alphabet, >0 if strl comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle)

string search: returns a pointer to the start of the first occurrence of
needle in haystacR, or NULL if needle was not found in haystacR.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

Common string.h Functions

Function Description
strlen(str) returns the # of chars in a C string (before null-terminating character).
strcmp(strl, str2), compares two strings; returns O if identical, <0 if str1 comes before
strncmp(strl, str2, n) str2in alphabet, >0 if strl comes after str2 in alphabet. strncmp
stops comparing after at most n characters.
strchr(str, ch) character search: returns a pointer to the first occurrence of ch in str,
strrchr(str, ch) or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, 4 Many string functions assume valid string |first occurrence of
pt found in haystacRk.
input; i.e., ends in a null terminator.
strcpy(dst, src), 5 rminating character.

strncpy(dst, src, n) Assumes enough space in dst. Strmgs must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src), concatenate src onto the end of dst. strncat stops concatenating
strncat(dst, src, n) after at most n characters. Always adds a null-terminating character.
strspn(str, accept), strspn returns the length of the initial part of str which contains only
strcspn(str, reject) characters in accept. strcspn returns the length of the initial part of

str which does not contain any characters in reject. A

Comparing Strings

We cannot compare C strings using comparison operators like ==, < or >. This
compares addresses!

// e.g. strl = 0x7f42, str2 = 0x654d
void doSomething(char *strl, char *str2) {

if (strl > str2) { .. // compares Ox7f42 > 0x654d!
Instead, use strcmp.

23

The string library: strcmp

strcmp(strl, str2):compares two strings.
* returns O if identical

* <0 if strl comes before str2 in alphabet

e >0 if strl comes after str2 in alphabet.

int compResult = strcmp(strl, str2);
if (compResult == 0) {

// equal
} else if (compResult < 0) {

// strl comes before str2

} else {
// strl comes after str2

¥

24

Copying Strings

We cannot copy C strings using =. This copies addresses!

// e.g. paraml = Ox7f42, param2 = 0x654d

void doSomething(char *paraml, char *param2) {
paraml = param2; // coples 0x654d. Points to same string!
param2[@] = 'H'; // modifies the one original string!

Instead, use strcpy.

25

The string library: strcpy

strcpy(dst, src):copiesthe contents of srcinto the string dst, including the
null terminator.

char strl[6];
strcpy(strl, "hello");

char str2[6];

strcpy(str2, strl);
str2[@0] = 'c’;

printf("%s", strl); // hello
printf("%s", str2); // cello

26

Copying Strings - strcpy

We must make sure there is enough space in the destination to hold the entire
copy, including the null-terminating character.

char str2[6]; // not enough space!
strcpy(str2, "hello, world!"™); // overwrites other memory!

Writing past memory bounds is called a “buffer overflow”. It can allow for
security vulnerabilities!

27

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

str2| °? ? ? ? ? ?

28

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

str2| 'h' ? ? ? ? ?

29

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

str2| 'h" | 'e’ ? ? ? >

30

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

str2| 'h' | 'e" | "1’ ? ? >

31

Copying Strings — Buffer Overflows

char stri[14];

strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

str2| 'h" | 'e" | "1" | "1" ? >

32

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\Z Ihl lel Ill |ll lol ?

33

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\Z Ihl lel Ill Ill lol I,l

34

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\Z Ihl lel Ill Ill lol IJI

35

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\Z Ihl lel Ill Ill lol IJI 1 I IWI

36

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\Z Ihl lel Ill Ill lol IJI 1 I IWI lol

37

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\Z Ihl lel Ill Ill lol IJI 1 I IWI IOI lr\l

38

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\Z Ihl lel Ill Ill lol IJI 1 I IWI IOI lr\l Ill

39

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

str2| 'h' | ‘e’ | "1' | 1" | o' | ', T 'w' fotiifpto o ML dE

40

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

str2| 'h* | 'e' | 1" | "1 | fo" | ',V (" " w' ot iptoo Altofdt o T

41

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

stril ‘e’ '\Q'
str2 ‘e’ '\Q'

42

Copying Strings — Buffer Overflows

char strl[14];
strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

strl

str2

"\Q'

"\Q'

43

Copying Strings - strncpy

strncpy(dst, src, n):copies at most the first n bytes from src into the
string dst. If there is no null-terminating character in these bytes, then dst will
not be null terminated!

// copying "hello"
char str2[5];
strncpy(str2, "hello, world!", 5); // doesn’t copy '\0'!

If there is no null-terminating character, we may not be able to tell where the
end of the string is anymore. E.g. strlen may continue reading into some

other memory in search of '\0"'!

44

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

str2 ? ? ? ? ?

45

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\z Ihl lel Ill Ill |O|

46

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\z lhl Iel Ill lll |0|

47

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\z lhl Iel Ill lll |0|

48

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\z lhl Iel Ill lll |0|

49

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\z lhl Iel Ill lll |0|

50

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\z lhl Iel Ill lll |0|

51

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\z lhl Iel Ill lll |0|

52

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\z lhl Iel Ill lll |0|

53

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\z lhl Iel Ill lll |0|

54

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1| 'h" | "e’ | "1 | 1T fot L, T T Twh | ot | et TLT p dT T TNeY

Str\z lhl Iel Ill lll |0|

55

Copying Strings - strncpy

If necessary, we can add a null-terminating character ourselves.

// copying "hello"

char str2[6]; // room for string and '\0'
strncpy(str2, "hello, world!", 5); // doesn’t copy '\0'!
str2[5] = '\0'; // add null-terminating char

56

C Doesn’t Automatically Initialize

Important note: C doesn’t automatically initialize variables or values to a default
value.

int x; // contains garbage value
char str[6]; // contains garbage characters

57

Copying Strings - strncpy

char strl[14];
strncpy(strl, "hello there", 5);

stra| 2 | 2 | 2 | 2 | 2 | 2 | 2| 2| 2| 2| 2| 2] 2| 2

58

Copying Strings - strncpy

char strl[14];
strncpy(strl, "hello there", 5);

str1| 'h"™ | "e” | "1 | 1" | "o’ ? ? ? ? ? ? ? ? ?

59

Copying Strings - strncpy

char strl[14];
strncpy(strl, "hello there", 5);
printf("%s\n", strl);

str1| 'h" | 'e’ | 1" | "1" | 'O ? ? ? ? ? ? ? ? ?

hellol|?||?(J|?||?||?

60

String Exercise

What is printed out by the following program?

1 int main(int argc, char *argv[]) {

2

cO N O U1 b W

char str[9];
strcpy(str, "Hi earth");
str[2] = "\@0';

printf("str = %s, len = %zu\n", str = Hi, len = 8
str, strlen(str)); str = Hi, len = 2
return 0; str = Hi earth, len
str = Hi earth, len
. None/other

Respond with your thoughts on PollEv:

pollev.com/cs107 or text CS107 to 22333 once to join.

(| I
N OO0

61

& When poll is active, respond at pollev.com/cs107

3 Text CS107 to 22333 once to join

What is printed out by the example string program?

str=Hi,len=8
str=Hi, len=2
str = Hi earth, len=8
str = Hi earth, len =2

None/other

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Concatenating Strings

We cannot concatenate C strings using +. This adds addresses!

// e.g. paraml = Ox7f, param2 = Ox65
void doSomething(char *paraml, char *param2) {
printf("%s", paraml + param2); // adds 0x7f and Ox65!

Instead, use strcat.

63

The string library: str(n)cat

strcat(dst, src):concatenates the contents of srcinto the string dst.
strncat(dst, src, n):same, but concats at most n bytes from src.

char strl[13]; // enough space for strings + '\0'
strcpy(strl, "hello ");

strcat(strl, "world!"); // removes old '"\@', adds new '\@' at end
printf("%s", strl); // hello world!

Both strcat and strncat remove the old \O' and add a new one at the end.

64

Concatenating Strings

char stri[13];
strcpy(strl, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(strl, str2);

stril e |l|]. |\@|
str2 o) |r\| l |\@|

65

Concatenating Strings

char stri[13];
strcpy(strl, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(strl, str2);

strl

str2

\Q'

\Q'

66

To omit characters at the end, make a new string that is a partial copy of the
original.

// Want just "race”
char strl[8];
strcpy(strl, "racecar");

char str2[5];

strncpy(str2, strl, 4);

str2[4] = "\0';

printf("%s\n", strl); // racecar
printf("%s\n", str2); // race

67

Goal: String Diamond

Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.
gt

|

A0 ‘

* For example, diamond ("BAILEY") should print:

B
BA
BAI
BAIL
BAILE
BAILEY
AILEY
ILEY
LEY
=Y g . |
Y o " | 68

To start: let’s print the
top half of the diamond.

Demo: Diamond, Part 1

Substrings and char *

You can also create a char * variable yourself that points to an address within in
an existing string.

char myString[3];

myString[@] = 'H';
myString[l] = '1i';
myString[2] = '\0@';

char *otherStr = myString; // points to 'H'

70

char *s (pointers to characters) are strings. We can use them to create
substrings of larger strings.

// Want just "car”
char chars[8];

strcpy(chars, "racecar");
char *strl = chars;

Char\s Ir‘l Ial ICI

\Q'

stri ‘ Oxfl

/1

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning.

// Want ju
char chars

strcpy(chars, "racecar");

char *stril
char *str2

st "car

[8];

= chars;

= chars + 4;

chars | 'r’

\Q'

stri ‘ Oxfl

str2

@fo‘

72

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning.

char chars[8];
strcpy(chars, "racecar");
char *strl = chars;

char *str2 = chars + 4;

printf("%s\n", strl); // racecar
printf("%s\n", str2); // car
chars r' 'a' 'c' ‘e 'c' 'a' "\0'

stril ‘@X‘Fl str2 @X‘FS‘

73

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning. NOTE: the pointer still refers to the same
characters!

char chars[8];

strcpy(chars, "racecar");

char *strl = chars;

char *str2 = chars + 4;
str2[0] = 'f';
printf("%s %s\n", chars,
printf("%s\n", str2);

strl);

chars | 'r' ‘a’

\Q'

stri ‘@xfl

str2

@fo‘

74

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning. NOTE: the pointer still refers to the same
characters!

char chars[8];

strcpy(chars, "racecar");

char *strl = chars;

char *str2 = chars + 4;
str2[0] = 'f';
printf("%s %s\n", chars,
printf("%s\n", str2);

strl);

// racefar racefar

// far

chars | 'r' ‘a’

Iel I_FI

\Q'

stri ‘@xfl

str2

@fo‘

75

We can combine pointer arithmetic and copying to make any substrings we’d
like.

// Want just "ace
char strl[8];
strcpy(strl, "racecar");

char str2[4];

strncpy(str2, strl + 1, 3);

str2[3] = "\0@';

printf("%s\n", strl); // racecar
printf("%s\n", str2); // ace

76

Goal: String Diamond

Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.

* For example, diamond ("BAILEY") should print:

B
BA
BAI
BAIL
BAILE
BAILEY
AILEY
ILEY
LEY
£y B T |
Y% o J 77

Now let’'s implement the
second half of the diamond!

Demo: Diamond, Part 2

char * vs. char|]

e char * is an 8-byte pointer — it stores an address of a character
e char[] is an array of characters — it stores the actual characters in a string

* When you pass a char[] as a parameter, it is automatically passed as a char *
(pointer to its first character)

 Stay tuned for next lecture for more!

79

 Characters

* Strings

* Common String Operations

Comparing
Copying
Concatenating
Substrings

Recap

Lecture 6 takeaway: C
strings are null-terminated
arrays of characters. We can
manipulate them using string
and pointer operations.

Next time: more strings

cp -r /afs/ir/class/cs107/lecture-code/lect6 .

80

Extra Practice

Copycat exercise

Challenge: implement strcat using other string functions.

char src[9];

strcpy(src, "We Climb");

char dst[200]; // lots of space
strcpy(dst, "The Hill ");

How could we replace a call to
strcat(dst, src); « strcat with a call to strcpy
instead?

&

82

Copycat exercise

Challenge: implement strcat using other string functions.

char src[9];

strcpy(src, "We Climb");

char dst[200]; // lots of space
strcpy(dst, "The Hill ");

equivalent

strcat(dst, src); <« > strcpy(dst + strlen(dst), src);

83

Strings Practice

char buf[9]; Line 6: What is printed?

strcpy(buf, "Potatoes"); A, matoes Q. Pomatoes D

printf("%s\n", buf); 5. mattoes E. Something else
C. Pomat ~. Compile error

char *word = buf + 2;
strncpy(word, "mat", 3);
printf("%s\n", buf);

A v A W N PR

wonrd

°)

{-\\
-,

6

bU‘F |P| |O| Itl Ial ltl IOI Iel ISI l\@[

84

