
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 6
C Strings

Reading: K&R (1.9, 5.5, Appendix B3) or Essential
C section 3

2

CS107 Topic 2: How can a
computer represent and

manipulate more complex
data like text?

3

CS107 Topic 2
How can a computer represent and manipulate more complex data like text?

Why is answering this question important?
• Shows us how strings are represented in C and other languages (this time)
• Helps us better understand buffer overflows, a common bug (this time)
• Introduces us to pointers, because strings can be pointers (next time)

assign2: implement 2 functions a 1 program using those functions to find the location
of different built-in commands in the filesystem. You’ll write functions to extract a list
of possible locations and tokenize that list of locations.

4

Learning Goals
• Learn how strings are represented in C; as an array of null-terminated

characters.
• Understand how to use the built-in string functions for common string tasks
• Learn about buffer overflow and what might cause it

5

Goal: String Diamond
Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.
• For example, diamond("BAILEY") should print:

B
BA
BAI
BAIL
BAILE
BAILEY
AILEY
ILEY
LEY
EY
Y

6

Lecture Plan
• Characters
• Strings
• Common String Operations

• Comparing
• Copying
• Concatenating
• Substrings

cp -r /afs/ir/class/cs107/lecture-code/lect6 .

7

Lecture Plan
• Characters
• Strings
• Common String Operations

• Comparing
• Copying
• Concatenating
• Substrings

cp -r /afs/ir/class/cs107/lecture-code/lect6 .

8

Char
A char is a variable type that represents a single character or “glyph”.

char letterA = 'A';
char plus = '+';
char zero = '0';
char space = ' ';
char newLine = '\n';
char tab = '\t';
char singleQuote = '\'';
char backSlash = '\\';

9

ASCII
Under the hood, C represents each char as an integer (its “ASCII value”).

• Uppercase letters are sequentially numbered
• Lowercase letters are sequentially numbered
• Digits are sequentially numbered
• Lowercase letters are 32 more than their uppercase equivalents (bit flip!)

char uppercaseA = 'A'; // Actually 65
char lowercaseA = 'a'; // Actually 97
char zeroDigit = '0’; // Actually 48

10

ASCII
We can take advantage of C representing each char as an integer:

bool areEqual = 'A' == 'A'; // true
bool earlierLetter = 'f' < 'c'; // false
char uppercaseB = 'A' + 1;
int diff = 'c' - 'a'; // 2
int numLettersInAlphabet = 'z' – 'a' + 1;
// or
int numLettersInAlphabet = 'Z' – 'A' + 1;

11

ASCII
We can take advantage of C representing each char as an integer:

// prints out every lowercase character
for (char ch = 'a'; ch <= 'z'; ch++) {

printf("%c", ch);
}

12

Common ctype.h Functions
Function Description

isalpha(ch) true if ch is 'a' through 'z' or 'A' through 'Z'

islower(ch) true if ch is 'a' through 'z'

isupper(ch) true if ch is 'A' through 'Z'

isspace(ch) true if ch is a space, tab, new line, etc.

isdigit(ch) true if ch is '0' through '9'

toupper(ch) returns uppercase equivalent of a letter

tolower(ch) returns lowercase equivalent of a letter

Remember: these return a char; they cannot modify an existing char!
More documentation with man isalpha, man tolower

13

Common ctype.h Functions
bool isLetter = isalpha('A'); // true
bool capital = isupper('f'); // false
char uppercaseB = toupper('b');
bool isADigit = isdigit('4'); // true

14

Lecture Plan
• Characters
• Strings
• Common String Operations

• Comparing
• Copying
• Concatenating
• Substrings

cp -r /afs/ir/class/cs107/lecture-code/lect6 .

15

C Strings
C has no dedicated variable type for strings. Instead, a string is
represented as an array of characters with a special ending sentinel value.

'\0' is the null-terminating character; you always need to allocate one extra
space in an array for it. '\0' is the character with numerical value 0.

"Hello"
index 0 1 2 3 4 5

char 'H' 'e' 'l' 'l' 'o' '\0'

16

C Strings
char myString[6];
myString[0] = 'H';
myString[1] = 'e';
myString[2] = 'l';
…
myString[5] = '\0';

17

String Length
Strings are not objects. They do not embed additional information (e.g., string
length). We must calculate this!

We can use the provided strlen function to calculate string length. The null-
terminating character does not count towards the length.

int length = strlen(myStr); // e.g. 13

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

Caution: strlen is O(N) because it must scan the entire string!
We should save the value if we plan to refer to the length later.

18

C Strings As Parameters
When we pass a string as a parameter, it is passed as a char *. C passes the
location of the first character rather than a copy of the whole array.
int doSomething(char *str) {

...
}

char myString[6];
...
doSomething(myString);

19

C Strings As Parameters
When we pass a string as a parameter, it is passed as a char *. C passes the
location of the first character rather than a copy of the whole array.
int doSomething(char *str) {

...
str[0] = 'c'; // modifies original string!
printf("%s\n", str); // prints cello

}

char myString[6];
... // e.g. this string is “Hello”
doSomething(myString);

We can still use a char * the
same way as a char[].

20

Lecture Plan
• Characters
• Strings
• Common String Operations

• Comparing
• Copying
• Concatenating
• Substrings

cp -r /afs/ir/class/cs107/lecture-code/lect6 .

21

Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

22

Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

Many string functions assume valid string
input; i.e., ends in a null terminator.

23

Comparing Strings
We cannot compare C strings using comparison operators like ==, < or >. This
compares addresses!

// e.g. str1 = 0x7f42, str2 = 0x654d
void doSomething(char *str1, char *str2) {

if (str1 > str2) { … // compares 0x7f42 > 0x654d!
Instead, use strcmp.

24

The string library: strcmp
strcmp(str1, str2): compares two strings.
• returns 0 if identical
• <0 if str1 comes before str2 in alphabet
• >0 if str1 comes after str2 in alphabet.

int compResult = strcmp(str1, str2);
if (compResult == 0) {

// equal
} else if (compResult < 0) {

// str1 comes before str2
} else {

// str1 comes after str2
}

25

Copying Strings
We cannot copy C strings using =. This copies addresses!

// e.g. param1 = 0x7f42, param2 = 0x654d
void doSomething(char *param1, char *param2) {

param1 = param2; // copies 0x654d. Points to same string!
param2[0] = 'H'; // modifies the one original string!

Instead, use strcpy.

26

The string library: strcpy
strcpy(dst, src): copies the contents of src into the string dst, including the
null terminator.

char str1[6];
strcpy(str1, "hello");

char str2[6];
strcpy(str2, str1);
str2[0] = 'c';

printf("%s", str1); // hello
printf("%s", str2); // cello

27

Copying Strings - strcpy
We must make sure there is enough space in the destination to hold the entire
copy, including the null-terminating character.

char str2[6]; // not enough space!
strcpy(str2, "hello, world!"); // overwrites other memory!

Writing past memory bounds is called a “buffer overflow”. It can allow for
security vulnerabilities!

28

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

? ? ? ? ? ?str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

- other program memory -

29

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' ? ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

30

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

31

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

32

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

33

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

34

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

35

- other program memory -' '

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

36

- other program memory -' ' 'w'

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

37

- other program memory -' ' 'w' 'o'

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

38

- other program memory -' ' 'w' 'o' 'r'

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

39

- other program memory -' ' 'w' 'o' 'r' 'l'

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

40

- other program memory -' ' 'w' 'o' 'r' 'l' 'd'

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

41

- other program memory -' ' 'w' 'o' 'r' 'l' 'd' '!'

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

42

- other program memory -' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

43

- other program memory -' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

Copying Strings – Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

44

Copying Strings - strncpy
strncpy(dst, src, n): copies at most the first n bytes from src into the
string dst. If there is no null-terminating character in these bytes, then dst will
not be null terminated!

// copying "hello"
char str2[5];
strncpy(str2, "hello, world!", 5); // doesn’t copy '\0'!

If there is no null-terminating character, we may not be able to tell where the
end of the string is anymore. E.g. strlen may continue reading into some
other memory in search of '\0'!

45

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

0 1 2 3 4

? ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

46

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' 'l' 'l' 'o'str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

47

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

48

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

49

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

50

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

51

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

52

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

53

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

54

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

55

Copying Strings - strncpy
char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

56

Copying Strings - strncpy
If necessary, we can add a null-terminating character ourselves.

// copying "hello"
char str2[6]; // room for string and '\0'
strncpy(str2, "hello, world!", 5); // doesn’t copy '\0'!
str2[5] = '\0'; // add null-terminating char

57

C Doesn’t Automatically Initialize
Important note: C doesn’t automatically initialize variables or values to a default
value.

int x; // contains garbage value
char str[6]; // contains garbage characters

58

Copying Strings - strncpy
char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

? ? ? ? ? ? ? ? ? ? ? ? ? ?

59

Copying Strings - strncpy
char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

60

Copying Strings - strncpy
char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

hello⍰⍰J⍰⍰⍰

61

String Exercise
What is printed out by the following program?

int main(int argc, char *argv[]) {
char str[9];
strcpy(str, "Hi earth");
str[2] = '\0';
printf("str = %s, len = %zu\n",

str, strlen(str));
return 0;

}

🤔

A. str = Hi, len = 8
B. str = Hi, len = 2
C. str = Hi earth, len = 8
D. str = Hi earth, len = 2
E. None/other

1
2
3
4
5
6
7
8

Respond with your thoughts on PollEv:
pollev.com/cs107 or text CS107 to 22333 once to join.

62

63

Concatenating Strings
We cannot concatenate C strings using +. This adds addresses!

// e.g. param1 = 0x7f, param2 = 0x65
void doSomething(char *param1, char *param2) {

printf("%s", param1 + param2); // adds 0x7f and 0x65!

Instead, use strcat.

64

The string library: str(n)cat
strcat(dst, src): concatenates the contents of src into the string dst.
strncat(dst, src, n): same, but concats at most n bytes from src.

char str1[13]; // enough space for strings + '\0'
strcpy(str1, "hello ");
strcat(str1, "world!"); // removes old '\0', adds new '\0' at end
printf("%s", str1); // hello world!

Both strcat and strncat remove the old '\0' and add a new one at the end.

65

Concatenating Strings
char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1, str2);

str1

0 1 2 3 4 5 6

'w' 'o' 'r' 'l' 'd' '!' '\0'str2

0 1 2 3 4 5 6 7 8 9 10 11 12

'h' 'e' 'l' 'l' 'o' ' ' '\0' ? ? ? ? ? ?

66

Concatenating Strings
char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1, str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12

'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4 5 6

'w' 'o' 'r' 'l' 'd' '!' '\0'

67

Substrings
To omit characters at the end, make a new string that is a partial copy of the
original.

// Want just "race"
char str1[8];
strcpy(str1, "racecar");

char str2[5];
strncpy(str2, str1, 4);
str2[4] = '\0';
printf("%s\n", str1); // racecar
printf("%s\n", str2); // race

68

Goal: String Diamond
Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.
• For example, diamond("BAILEY") should print:

B
BA
BAI
BAIL
BAILE
BAILEY
AILEY
ILEY
LEY
EY
Y

To start: let’s print the
top half of the diamond.

69

Demo: Diamond, Part 1

diamond.c

70

Substrings and char *
You can also create a char * variable yourself that points to an address within in
an existing string.

char myString[3];
myString[0] = 'H';
myString[1] = 'i';
myString[2] = '\0';

char *otherStr = myString; // points to 'H'

71

Substrings
char *s (pointers to characters) are strings. We can use them to create
substrings of larger strings.

// Want just "car"
char chars[8];
strcpy(chars, "racecar");
char *str1 = chars;

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

str1

0xee

0xf1

chars

72

Substrings
Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning.

// Want just "car"
char chars[8];
strcpy(chars, "racecar");
char *str1 = chars;
char *str2 = chars + 4;

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

str1

0xee

0xf1 str2

0xd2

0xf5

chars

73

Substrings
Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning.

char chars[8];
strcpy(chars, "racecar");
char *str1 = chars;
char *str2 = chars + 4;
printf("%s\n", str1); // racecar
printf("%s\n", str2); // car

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

str1

0xee

0xf1 str2

0xd2

0xf5

chars

74

Substrings
Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning. NOTE: the pointer still refers to the same
characters!

char chars[8];
strcpy(chars, "racecar");
char *str1 = chars;
char *str2 = chars + 4;
str2[0] = 'f';
printf("%s %s\n", chars, str1);
printf("%s\n", str2);

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

'r' 'a' 'c' 'e' 'f' 'a' 'r' '\0'

str2

0xd2

0xf5

0xee

0xf1str1

chars

75

Substrings
Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning. NOTE: the pointer still refers to the same
characters!

char chars[8];
strcpy(chars, "racecar");
char *str1 = chars;
char *str2 = chars + 4;
str2[0] = 'f';
printf("%s %s\n", chars, str1); // racefar racefar
printf("%s\n", str2); // far

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

'r' 'a' 'c' 'e' 'f' 'a' 'r' '\0'

str2

0xd2

0xf5

0xee

0xf1str1

chars

76

Substrings
We can combine pointer arithmetic and copying to make any substrings we’d
like.

// Want just "ace"
char str1[8];
strcpy(str1, "racecar");

char str2[4];
strncpy(str2, str1 + 1, 3);
str2[3] = '\0';
printf("%s\n", str1); // racecar
printf("%s\n", str2); // ace

77

Goal: String Diamond
Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.
• For example, diamond("BAILEY") should print:

B
BA
BAI
BAIL
BAILE
BAILEY
AILEY
ILEY
LEY
EY
Y

Now let’s implement the
second half of the diamond!

78

Demo: Diamond, Part 2

diamond.c

79

char * vs. char[]
• char * is an 8-byte pointer – it stores an address of a character
• char[] is an array of characters – it stores the actual characters in a string
• When you pass a char[] as a parameter, it is automatically passed as a char *

(pointer to its first character)
• Stay tuned for next lecture for more!

80

Recap
• Characters
• Strings
• Common String Operations

• Comparing
• Copying
• Concatenating
• Substrings

Next time: more strings

Lecture 6 takeaway: C
strings are null-terminated
arrays of characters. We can
manipulate them using string
and pointer operations.

cp -r /afs/ir/class/cs107/lecture-code/lect6 .

81

Extra Practice

82

Copycat exercise
Challenge: implement strcat using other string functions.

char src[9];
strcpy(src, "We Climb");
char dst[200]; // lots of space
strcpy(dst, "The Hill ");

strcat(dst, src);

🤔

How could we replace a call to
strcat with a call to strcpy
instead?

83

Copycat exercise
Challenge: implement strcat using other string functions.

char src[9];
strcpy(src, "We Climb");
char dst[200]; // lots of space
strcpy(dst, "The Hill ");

strcat(dst, src); strcpy(dst + strlen(dst), src);equivalent

84

Strings Practice

char buf[9];
strcpy(buf, "Potatoes");
printf("%s\n", buf);
char *word = buf + 2;
strncpy(word, "mat", 3);
printf("%s\n", buf);

Line 6: What is printed?1
2
3
4
5
6

🤔

A. matoes
B. mattoes
C. Pomat

D. Pomatoes
E. Something else
F. Compile error

0xe0 0xe1 0xe2 0xe3 0xe4 0xe5 0xe6 0xe7 0xe8

'P' 'o' 't' 'a' 't' 'o' 'e' 's' '\0'

0xf0

word

buf

