CS107, Lecture 7

C Strings, Buffer Overflows and Security

Reading: K&R (1.6, 5.5, Appendix B3) or Essential
C section 3

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: 2 Creative Commons Attribution 2.5 License. All rights reserved.
‘u l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

CS107 Topic 2

How can a computer represent and manipulate more complex data like text?

Why is answering this question important?

* Shows us how strings are represented in C and other languages (last time)
* Helps us better understand buffer overflows, a common bug (this time)

* Introduces us to pointers, because strings can be pointers (next time)

assign2: implement 2 functions a 1 program using those functions to find the location
of different built-in commands in the filesystem. You’'ll write functions to extract a list
of possible locations and tokenize that list of locations.

Learning Goals

* Understand how to use the built-in string functions for common string tasks
e Learn more about the risks of buffer overflows and how to mitigate them

Lecture Plan

* Recap: Strings so far
* Searching in Strings
* Practice: Password Verification

e Buffer Overflows and Security

cp -r /afs/ir/class/cs107/lecture-code/lect7 . 4

Lecture Plan

* Recap: Strings so far

* Searching in Strings
e Practice: Password Verification

e Buffer Overflows and Security

cp -r /afs/ir/class/cs107/lecture-code/lect7 . 5

C strings are arrays of characters ending with a null-terminating character '\0'.

index

va/ue IHI lel Ill lll IOI I,l 1 1 IWI IOI lr‘l lll Idl I!l I\@l

String operations such as strlen use the null-terminating character to find the
end of the string.

Side note: use strlen to get the length of a string. Don’t use sizeof!

Common string.h Functions

Function

Description

strlen(str)

returns the # of chars in a C string (before null-terminating character).

strcmp(strl, str2),
strncmp(strl, str2, n)

compares two strings; returns O if identical, <0 if str1 comes before
str2in alphabet, >0 if strl comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle)

string search: returns a pointer to the start of the first occurrence of
needle in haystacR, or NULL if needle was not found in haystacR.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

We can combine pointer arithmetic and copying to make any substrings we’d
like.

// Want just "ace
char strl[8];
strcpy(strl, "racecar");

char str2[4];

strncpy(str2, strl + 1, 3);

str2[3] = "\0@';

printf("%s\n", strl); // racecar
printf("%s\n", str2); // ace

char * vs. char|]

e char * is an 8-byte pointer — it stores an address of a character
e char[] is an array of characters — it stores the actual characters in a string

* When you pass a char[] as a parameter, it is automatically passed as a char *
(pointer to its first character)

char * vs. char|]

char myString]]
VS
char *myString

You can create char * pointers to point to any character in an existing string and

reassign them since they are just pointer variables. You cannot reassign an
array.

char myString[6];
strcpy(myString, "Hello");
myString = "Another string"; // not allowed!

char *myOtherString = myString;
myOtherString = somethingElse; // ok

10

Lecture Plan

* Recap: Strings so far
* Searching in Strings

* Practice: Password Verification

e Buffer Overflows and Security

cp -r /afs/ir/class/cs107/lecture-code/lect7 . 11

Searching For Letters

strchr returns a pointer to the first occurrence of a character in a string, or
NULL if the character is not in the string.

char bailey[7];
strcpy(bailey, "Bailey");
char *letterl = strchr(bailey, 'i');

printf("%s\n", bailey); // Bailey
printf("%s\n", letterI); // iley

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the /last occurrence.

12

Searching For Strings

strstr returns a pointer to the first occurrence of the second string in the first,
or NULL if it cannot be found.

char bailey[11];
strcpy(bailey, "Bailey Dog");
char *substr = strstr(bailey, "Dog");

printf("%s\n", bailey); // Bailey Dog
printf("%s\n", substr); // Dog

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.

13

strspn returns the length of the initial part of the first string which contains
only characters in the second string.

char bailey[10];
strcpy(bailey, "Bailey Dog");
int spanLength = strspn(bailey, "aBeoi"); // 3

“How many places can we go in the first string before I
encounter a character not in the second string?”

14

strcspn (c = “complement”) returns the length of the initial part of the first
string which contains only characters not in the second string.

char bailey[10];
strcpy(bailey, "Bailey Dog");
int spanLength = strcspn(bailey, "driso"); /] 2

“How many places can we go in the first string before I
encounter a character in the second string?”

15

C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. We can still
operate on the string the same way as with a char[]. (We’ll see why today!).

int doSomething(char *str) {
char secondChar = str[l1];

// can also write this, but it is really a pointer
int doSomething(char str[]) { ...

16

Arrays of Strings

We can make an array of strings to group multiple strings together:

char *stringArray[5]; // space to store 5 char *s

We can also use the following shorthand to initialize a string array:

char *stringArray[] = {
"Hello",

"Fi"’

"Hey there”

s

17

Arrays of Strings

We can access each string using bracket syntax:
printf("%s\n", stringArray[@]); // print out first string

When an array is passed as a parameter in C, C passes a pointer to the first
element of the array. This is what argv is in main! This means we write the
parameter type as:

void myFunction(char **stringArray) {

// equivalent to this, but it is really a double pointer
void myFunction(char *stringArray[]) {

18

Practice: Password Verification

Write a function verifyPassword that accepts a candidate password and
certain password criteria and returns whether the password is valid.

bool verifyPassword(char *password, char *validChars, char
*badSubstrings[], int numBadSubstrings);

password is valid if it contains only letters in validChars, and does not contain
any substrings in badSubstrings.

19

Practice: Password Verification

bool verifyPassword(char *password, char *validChars, char
*badSubstrings[], int numBadSubstrings);

Example:

char *invalidSubstrings[] = { "1234" };

bool validl = verifyPassword("1572", "©123456789",
invalidSubstrings, 1); // true

bool valid2 = verifyPassword("141234", "©123456789",
invalidSubstrings, 1); // false

20

Practice: Password
Verification

Lecture Plan

* Recap: Strings so far

* Searching in Strings

* Practice: Password Verification
* Buffer Overflows and Security

cp -r /afs/ir/class/cs107/lecture-code/lect7 . 22

Recall: Buffer Overflows

We must make sure there is enough space in the destination to hold the entire
copy, including the null-terminating character. Writing past memory bounds is
called a “buffer overflow”. It can allow for security vulnerabilities!

char stri[14];

strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!

str1| "h" | "e” | "1 | 1T ot L, T T Twh | ot | et Tl td T TN

str2| 'h" | 'e" | 1" | ‘1Y ot Y, Y Y twt fot et L idt T TG

23

Buffer Overflow Impacts

Buffer overflows are not merely functionality bugs; they can cause a range of
unintended behavior:

* Let the user access memory they shouldn’t be able to access

* Let the user modify memory they shouldn’t be able to access

* Change a value that is used later in the program
* User changes the program to execute their own custom instructions instead

e And more...

It’s our job as programmers to find and fix buffer overflows and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with our code.

24

Buffer Overflow Example: ./buf

int main(int argc, char *argv[]) {
char secret[4] = "123";
// assume secret comes right after name in memory

// (this is not always true)
char name[4];

strcpy(name, argv[1]); Which of these arguments

would cause the program to
print “You're in!"?

if (!strcmp(secret, argv[2])) {
printf("You're in!\n");
}

return 0;

Jbuf fgh efgh
Respond with your thoughts .;EEF Zﬁﬁﬂeaﬁcde ;

on PollEv: pollev.com/cs107 or /buf a a -
text CS107 to 22333 once to join. /buf abcdefgh abcd K‘\J

5

& When poll is active, respond at pollev.com/cs107

3 Text CS107 to 22333 once to join

Which of these arguments would cause the program to
print "You're in!"?

./buf abcdefgh efgh
./buf abcd abcd
./buf a a

./buf abcdefgh abcd

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Recap

* Recap: Strings so far Lecture 7 takeaway: C

* Searching in Strings strings are pointers and

* Practice: Password Verification arrays. C strings are error-
* Buffer Overflows and Security prone, and issues like buffer

overflows can arise!
Valgrind is a tool that can
help detect memory errors.

cp -r /afs/ir/class/cs107/lecture-code/lect7 . 27

Extra Practice

2. Code study: strncpy

STRCPY(3) Linux Programmer's Manual STRCPY(3)
DESCRIPTION FYR o 1o 1 g P 1 ' '
The strncpy() function is similar, except that at most n bytes of src are buf M 0 n d d y \@

copied. Warning: If there is no null byte among the first n bytes of src,
the string placed in dest will not be null-terminated.

If the length of src is less than n, strncpy() writes additional null
bytes to dest to ensure that a total of n bytes are written.

str\ IFI lr‘l lil I\@I

A simple implementation of strncpy() might be:

1 char *strncpy(char *dest, const char *src, size t n) {
size t 1i;
for (1 =0; 1 < n & & src[i] = "\@'; i++)
dest[i] = src[i];
for (3 1 < n; i++)
dest[i] = "\@';
7 return dest; P

8) (&9

What happens if we call strncpy(buf, str, 5);? 29

(o) WV, I S VY

2. Code study: strncpy

STRCPY(3) Linux Programmer's Manual STRCPY(3)
DESCRIPTION FYR o 1o 1 g P 1 ' '
The strncpy() function is similar, except that at most n bytes of src are buf M 0 n d d y \@

copied. Warning: If there is no null byte among the first n bytes of src,
the string placed in dest will not be null-terminated.

If the length of src is less than n, strncpy() writes additional null
bytes to dest to ensure that a total of n bytes are written.

str\ IFI lr‘l lil I\@I

A simple implementation of strncpy() might be:

1 char *strncpy(char *dest, const char *src, size t n) {
size t 1i;

3 for (1 =0; 1 < n & src[i] != "\0'; i++) dest

4 dest[i] = src[i]; src

5 for (; 1 < n; i++)

6 dest[i] = "\@'; n 5
7 return dest;

8 } .

What happens if we call strncpy(buf, str, 5);? 30

