CS107, Lecture 8
C Strings, Valgrind and Pointers

Reading: K&R (5.2-5.5) or Essential C section 6

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: 2 Creative Commons Attribution 2.5 License. All rights reserved.

‘u l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

CS107 Topic 2

How can a computer represent and manipulate more complex data like text?

Why is answering this question important?

* Shows us how strings are represented in C and other languages (previously)
* Helps us better understand buffer overflows, a common bug (previously)

* Introduces us to pointers, because strings can be pointers (this time)

assign2: implement 2 functions a 1 program using those functions to find the location
of different built-in commands in the filesystem. You’'ll write functions to extract a list
of possible locations and tokenize that list of locations.

Learning Goals

e Learn more about the risks of buffer overflows and how to mitigate them

* Understand how strings are represented as pointers and how that helps us
better understand their behavior

* Learn about pointers and how they help us access data without making copies
* Become familiar with using memory diagrams to understand code behavior

Lecture Plan

e Buffer Overflows, Security and Valgrind
* Review: Pointers
* Strings and Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 . 4

Lecture Plan

 Buffer Overflows, Security and Valgrind
* Review: Pointers
* Strings and Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 . 5

Buffer Overflow Impacts

Buffer overflows are not merely functionality bugs; they can cause a range of
unintended behavior:

* Let the user access memory they shouldn’t be able to access

* Let the user modify memory they shouldn’t be able to access

* Change a value that is used later in the program
* User changes the program to execute their own custom instructions instead

e And more...

It’s our job as programmers to find and fix buffer overflows and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with our code.

Buffer Overflow Example: ./buf

int main(int argc, char *argv[]) {
char secret[4] = "123";

// assume secret comes right after name in memory

// (this is not always true)
char name[4];

strcpy(name, argv[1l]);

if (!strcmp(secret, argv[2])) {
printf("You're in!\n");
}

return 0;

Which of these arguments

would cause the program to
print “You're in!"?

"\Q'

/buf abcdefg efg
/buf abcd abcd
J/buf a a

/buf abcdefgh abcd

o0 ®p

Buffer Overflow Impacts

* AOL instant messenger buffer overflow: allowed remote attackers to execute
code: https://www.cvedetails.com/cve/CVE-2002-0362/

* Morris Worm: first internet worm to gain widespread attention; exploited
buffer overflow in Unix command called "finger”:
https://www.zdnet.com/article/the-morris-worm-internet-malware-turns-25/

https://www.cvedetails.com/cve/CVE-2002-0362/
https://www.zdnet.com/article/the-morris-worm-internet-malware-turns-25/

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

 Carefully reading documentation
* Thorough testing to uncover issues before release
* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

e Carefully reading documentation

* Thorough testing to uncover issues before release
* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

10

How can we fix buffer overflows?

MAN page for gets():

“Never use gets(). Because it 1s impossible to tell
without Rnowing the data in advance how many characters
gets() will read, and because gets() will continue to
store characters past the end of the buffer, it 1is
extremely dangerous to use. It has been used to break
computer security. Use fgets() instead.”

11

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

 Carefully reading documentation
* Thorough testing to uncover issues before release

* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

12

How Can We Fix Overflows?

 Valgrind: Your Greatest Ally
* Write your own tests
* Consider writing tests before writing the main program

cs1le7.stanford.edu/testing.html

13

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

 Carefully reading documentation
* Thorough testing to uncover issues before release
* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

14

How Can We Fix Overflows?

Documentation & MAN Pages (Written by Others)

“The strcpy() function copies the string pointed to by src,
including the terminating null byte (°\0’), to the buffer pointed
to by dest. The strings may not overlap, and the destination
string dest must be large enough to receive the copy. Beware of
buffer overruns! (See BUGS.) ..

BUGS

If the destination string of a strcpy() is not large enough, then
anything might happen. Overflowing fixed-length string buffers 1is

a favorite cracker technique for taking complete control of the
machine. Any time a program reads or copies data into a buffer,
the program first needs to check that there’s enough space. This
may be unnecessary if you can show that overflow is impossible,
but be careful: programs can get changed over time, in ways that

may make the impossible possible.”
15

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

 Carefully reading documentation

* Thorough testing to uncover issues before release

* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

16

Memory Safe Systems Programming

ldea 5: Choose your Tools & Languages Carefully

Existing code bases or requirements for a project may dictate what tools you
use. Knowing Cis crucial — it is and will remain widely used.

When you you are choosing tools for systems programming, consider languages
that can help guard against programmer error.

* Rust (Mozilla)
* Go (Google)
* Project Verona (Microsoft)

17

Association for Computing Machinery
ACM) Code of Ethics

ACM Code of Ethics and Professional Conduct

ACM Code of Ethics and Professional Conduct |
On This Pz

Preamble
Preamble
Computing professionals' actions change the world. To act responsibly, they should reflect upon the wider
impacts of their work, consistently supporting the public good. The ACM Code of Ethics and Professional Lo CERERY
Conduct ("the Code") expresses the conscience of the profession. 1.1 Contrit
well-being,
The Code is designed to inspire and guide the ethical conduct of all computing professionals, including are stakeh
current and aspiring practitioners, instructors, students, influencers, and anyone who uses computing 1.2 Avoid I
technology in an impactful way. Additionally, the Code serves as a basis for remediation when violations
occur. The Code includes principles formulated as statements of responsibility, based on the 1.3 Be hon
understanding that the public good is always the primary consideration. Each principle is supplemented 1.4 Be fair
by guidelines, which provide explanations to assist computing professionals in understanding and discriminat
applying the principle. 1.5 Respec
new ideas.

https://www.acm.org/code-of-ethics 18

ACM Code of Ethics on Security

2.9 Design and implement systems that are robustly and usably secure.

Breaches of computer security cause harm. Robust security should be a primary consideration
when designing and implementing systems. Computing professionals should perform due
diligence to ensure the system functions as intended, and take appropriate action to secure
resources against accidental and intentional misuse, modification, and denial of service. As
threats can arise and change after a system is deployed, computing professionals should integrate
mitigation techniques and policies, such as monitoring, patching, and vulnerability reporting.
Computing professionals should also take steps to ensure parties affected by data breaches are
notified in a timely and clear manner, providing appropriate guidance and remediation.

To ensure the system achieves its intended purpose, security features should be designed to be as
intuitive and easy to use as possible. Computing professionals should discourage security
precautions that are too confusing, are situationally inappropriate, or otherwise inhibit legitimate
use.

In cases where misuse or harm are predictable or unavoidable, the best option may be to not
implement the system.
https://www.acm.org/code-of-ethics 19

Buffer Overflows

* We must always ensure that memory operations we perform don’t improperly
read or write memory.

* E.g. don’t copy a string into a space that is too small!
* E.g. don’t ask for the string length of an uninitialized string!

* The Valgrind tool may be able to help track down memory-related issues.
* See cs107.stanford.edu/resources/valgrind
* We'll talk about Valgrind more when we talk about dynamically-allocated memory.
* Valgrind can detect some, but not all, stack-memory-related issues

20

Demo: Memory Errors

Lecture Plan

e Buffer Overflows, Security and Valgrind
* Review: Pointers
* Strings and Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 . 22

Strings and Pointers

C strings can be represented as char[] or char *.
 When we create char[], we are creating space for characters
* When we create char *, we are creating space for an address of character(s)

e Strings are implicitly converted to char * when passed as parameters
e E.g. all string functions take char * parameters, but accept char(]

* A char * is technically a pointer to a single character. But we commonly use
char * as string by having the character it points to be followed by more
characters and ultimately a null terminator. But a char * could also just point to
a single character (not a string).

23

Pointers and Memory

A pointer is a variable that stores a memory address.

* Memory is a big array of bytes, and each byte has a
unigue numeric index that is commonly written in
hexadecimal. A pointer stores one of these
“indexes”.

* Because there is no pass-by-reference in C like in
C++, pointers let us pass around the address of one

instance of memory, instead of making many copies.

* Pointers are also essential for allocating memory on
the heap, and to refer to memory generically, both
of which we will cover later.

Address Value
ox105| "\O’
oxle4| '€’
oxie3| '1°
ox102| P’
ox101| P’
ox100| '@’

24

T CAELTE

STACK
When you pass a value as a parameter, C Address Value
passes a copy of that value.
. . : [x oxife| 2
void myFunc(int val) { main() 3
val = 3;
}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

25

T CAELTE

STACK
When you pass a value as a parameter, C Address Value
passes a copy of that value.
. . : [x oxife| 2
void myFunc(int val) { main() 3
val = 3;
}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

26

T CAELTE

STACK
When you pass a value as a parameter, C Address Value

passes a copy of that value.

X ©Ox1fe 2

void myFunc(int val) { main()

) val = 3; myFunc() val @xl@!

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

||

27

T CAELTE

STACK
When you pass a value as a parameter, C Address Value

passes a copy of that value.

X ©Ox1fe 2

void myFunc(int val) { main()

) val = 3; myFunc() val @xl@!

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

||

28

T CAELTE

STACK
When you pass a value as a parameter, C Address Value

passes a copy of that value.

X ©Ox1fe 2

void myFunc(int val) { main()

) val = 3; myFunc() val @xl@!

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

||

29

T CAELTE

STACK
When you pass a value as a parameter, C Address Value
passes a copy of that value.
. . : [x oxife| 2
void myFunc(int val) { main() 3
val = 3;
}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

30

Pointers allow us to pass around the location of data so that the original data
can be modified in other functions.

Example: | want to write a function myFunc that can change the value of an
existing integer to be 3.

int main(int argc, char *argv[]) {
int x = 2;
myFunc(???);
printf("%d", x); // want to print 3

31

int x = 2;

// Make a pointer that stores
// (& means "address of")
int *xPtr = &x;

the address of x.

If declaration: “pointer”
ex: int *is "pointer to an int”

If operation: "dereference/the value at address’
ex: *num is "the value at address num"

)

// Dereference the pointer to go to that address.

// (* means "dereference")

printf("%d", *xPtr); // prints 2

. . STACK
A pointer lets us pass where a particular Address Value

instance of data is, so it can be modified.

. [x Ooxlfe| 2
void myFunc(int *intPtr) { main() .
*intPtr = 3;
}
int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x);

printf("%d", x); // 3!

33

. . STACK
A pointer lets us pass where a particular Address Value

instance of data is, so it can be modified.

. [x Ooxlfe| 2
void myFunc(int *intPtr) { main() .
*intPtr = 3;
}
int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;

printf("%d", x); // 3!

34

. . STACK
A pointer lets us pass where a particular Address Value

instance of data is, so it can be modified.

X ©Ox1fe 2

void myFunc(int *intPtr) { main()
*intPtr = 3; .
} myFunc() | intPtr 0x10

——
e

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;
printf("%d", x); // 3!

35

. . STACK
A pointer lets us pass where a particular Address Value

instance of data is, so it can be modified.

X ©Ox1fe 2

void myFunc(int *intPtr) { main()
*intPtr = 3; .
} myFunc() | intPtr 0x10

——
e

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;
printf("%d", x); // 3!

36

. . STACK
A pointer lets us pass where a particular Address Value

instance of data is, so it can be modified.

X ©Ox1fe 3

void myFunc(int *intPtr) { main()
*intPtr = 3; .
} myFunc() | intPtr 0x10

——
e

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;
printf("%d", x); // 3!

37

. . STACK
A pointer lets us pass where a particular Address Value

instance of data is, so it can be modified.

. [x ©oxilfe| 3
void myFunc(int *intPtr) { main() .
*intPtr = 3;
}
int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x);

printf("%d", x); // 3!

38

* If you are performing an operation with some input and do not care about any
changes to the input, pass the data type itself.

* If you are modifying a specific instance of some value, pass the location of
what you would like to modify and dereference that location to access what’s

there.

Do | care about modifying this instance of my
data? If so, | need to pass where that instance

lives, as a parameter, so it can be modified.

39

Pointers Practice

void makeUpper(char *ptr) { What should go in each of the
} 1 = toupper(_2_); blanks so that this code correctly
modifies ch to be capitalized?

int main(int argc, char *argv[]) {
char ch = 'h';

// want to modify ch to be capital
makeUpper(3);

printf("%c\n", ch); // should print 'H'
return 0;

Respond with your thoughts |
on PollEv: pollev.com/cs107 or \
text CS107 to 22333 once to join.

& When poll is active, respond at pollev.com/cs107

3 Text CS107 to 22333 once to join

What should go in each of the blanks so that this code
correctly modifies ch to be capitalized?

1: *ptr, 2: ptr, 3: &ptr
1: ptr, 2: *ptr, 3: &ptr
1: *ptr, 2: *ptr, 3: &ptr
1: &ptr, 2: *ptr, 3: *ptr

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Pointers Practice

void makeUpper(char *ptr) { What should go in each of the
*ptr = toupper(*ptr);

) blanks so that this code correctly
modifies ch to be capitalized?

int main(int argc, char *argv[]) {

char ch = 'h';

// want to modify ch to be capital
makeUpper(&ch);

printf("%c\n", ch); // should print 'H
return 9;

42

Lecture Plan

e Buffer Overflows, Security and Valgrind
* Review: Pointers
 Strings and Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 . 43

When we declare an array of characters,
contiguous memory is allocated on the stack to
store the contents of the entire array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");

main()

STACK

Address

Value

0x105
0x104
0x103
0x102
ox101
str—_ox100

44

When we declare a char *, we allocate space on
the stack to store an address, not actual characters.

But we can still generally use char * the same as
char(].

int main(int argc, char *argv[]) { .
char str[6]; main()
strcpy(str, "apple");
char *strAlt = str;

STACK

Address Value
Ox1e5| "\0'

0x104 ‘e’

0x103 1

ox102 | 'p'

ox1e1| 'p'
str—_ox100l 'a’
strAlt oxf [0x100

45

Strings as Parameters

STACK

When we pass a char array as a parameter, C Address Value
makes a copy of the address of the first array B
element and passes it (as a char *) to the function. Tox105| '\o"
. ox104 | “e"
void myFunc(char *myStr) { ox103] *1°
) T main() ox102| 'p’
: ox101 | ‘p"
int main(int argc, char *argv[]) { stp _
©x100
char str[6]; O °
strcpy(str, "apple"); -
myFunc(str);
! .o myFunc() | myStr oxf

Strings as Parameters

STACK

This means if we modify characters in myFunc, Address Value
the changes will persist back in main! -
- 0x105| "\@'
void myFunc(char *myStr) { ox104 [ty
myStr[4] = 'y'; —
} . ©x103 1
main() ox102| 'p’
int main(int argc, char *argv[]) { ox101 | ‘p'
char str[6]; <tp -
S'tr‘pr(S'tr‘, "apple"); i@Xl@@ d
myFunc(str); —

printf("%s", str); // apply
.o myFunc() | myStr oxt

Read-only Strings

There is another convenient way to create a string if we do not need to modify it
later. We can create a char * and set it directly equal to a string literal.

char *myString = "Hello, world!";

printf("%s", myString); // Hello, world!

48

Read-only Strings

When we declare a char pointer equal to a string

literal, the characters are not stored on the stack.

Instead, they are stored in a special area of

memory called the “data segment”. We cannot STACK

Address Value

_ _ _ str Oxffo
modify memory in this segment.
char *str = "hi"; T
The pointer variable (e.g. str) refers to the address Ox12
of the first character of the string in the data DATA SEGMENT ox11
segment. :
NOTE: not all char * strings are ox10
read-only. Only ones that point to

characters in the data segment are
read-only.

@xlq

-\

"\Q'

1

lhl

49

Read-only Strings

Read-only strings are convenient to use, but make sure to not use a read-only
string in code that tries to modify its characters — it will crash!

char *myString = "Hello, world!";
myString[@] = 'h'; // crashes!

There’s no way in code to check if a string is read-only; it’s up to the
programmer to properly use strings to avoid these crashes.

* E.g. don’t pass in a read-only string as the src to strcpy

strcpy(myString, "Hi"); // crashes!

50

Read-only Strings

A string is read-only if it points to characters that live in the data segment, rather
than memory we can modify.

char *readOnly = "Hi";

char modifiable[6];
strcpy(modifiable, "Hi");

// 1is ptr read-only?

char *ptr = modifiable;

// no, because it points to characters on the stack
ptr[@] = 'h'; // ok!

51

Read-Only Strings

/* It’s up to programmer using this function to not pass
* a read-only string.
*/
void myFunc(char *myStr) {
myStr[0] = 'h';
}

52

Recap

e Buffer Overflows, Security and Valgrind Lecture 8 takeaway: C

* Review: Painters strings are pointers and

* Strings and Pointers arrays. C strings are error-
prone, and issues like buffer
overflows can arise!
Valgrind is a tool that can
help detect memory errors.

cp -r /afs/ir/class/cs107/lecture-code/lect8 . 53

