
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 8
C Strings, Valgrind and Pointers

Reading: K&R (5.2-5.5) or Essential C section 6

😷 masks recommended

2

CS107 Topic 2
How can a computer represent and manipulate more complex data like text?

Why is answering this question important?
• Shows us how strings are represented in C and other languages (previously)
• Helps us better understand buffer overflows, a common bug (previously)
• Introduces us to pointers, because strings can be pointers (this time)

assign2: implement 2 functions a 1 program using those functions to find the location
of different built-in commands in the filesystem. You’ll write functions to extract a list
of possible locations and tokenize that list of locations.

3

Learning Goals
• Learn more about the risks of buffer overflows and how to mitigate them
• Understand how strings are represented as pointers and how that helps us

better understand their behavior
• Learn about pointers and how they help us access data without making copies
• Become familiar with using memory diagrams to understand code behavior

4

Lecture Plan
• Buffer Overflows, Security and Valgrind
• Review: Pointers
• Strings and Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

5

Lecture Plan
• Buffer Overflows, Security and Valgrind
• Review: Pointers
• Strings and Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

6

Buffer Overflow Impacts
Buffer overflows are not merely functionality bugs; they can cause a range of
unintended behavior:
• Let the user access memory they shouldn’t be able to access
• Let the user modify memory they shouldn’t be able to access

• Change a value that is used later in the program
• User changes the program to execute their own custom instructions instead
• And more…

It’s our job as programmers to find and fix buffer overflows and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with our code.

7

Buffer Overflow Example: ./buf
int main(int argc, char *argv[]) {

char secret[4] = "123";
// assume secret comes right after name in memory
// (this is not always true)
char name[4];
strcpy(name, argv[1]);

if (!strcmp(secret, argv[2])) {
printf("You're in!\n");

}
return 0;

} A. ./buf abcdefg efg
B. ./buf abcd abcd
C. ./buf a a
D. ./buf abcdefgh abcd

Which of these arguments
would cause the program to
print “You’re in!”?

name secret

'a' 'b' 'c' 'd' 'e' 'f' 'g' '\0'

8

Buffer Overflow Impacts
• AOL instant messenger buffer overflow: allowed remote attackers to execute

code: https://www.cvedetails.com/cve/CVE-2002-0362/
• Morris Worm: first internet worm to gain widespread attention; exploited

buffer overflow in Unix command called ”finger”:
https://www.zdnet.com/article/the-morris-worm-internet-malware-turns-25/

https://www.cvedetails.com/cve/CVE-2002-0362/
https://www.zdnet.com/article/the-morris-worm-internet-malware-turns-25/

9

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

10

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

11

How can we fix buffer overflows?
MAN page for gets():
“Never use gets(). Because it is impossible to tell
without knowing the data in advance how many characters
gets() will read, and because gets() will continue to
store characters past the end of the buffer, it is
extremely dangerous to use. It has been used to break
computer security. Use fgets() instead.”

12

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

13

How Can We Fix Overflows?
• Valgrind: Your Greatest Ally
• Write your own tests
• Consider writing tests before writing the main program

✨ cs107.stanford.edu/testing.html ✨

14

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

15

How Can We Fix Overflows?
Documentation & MAN Pages (Written by Others)

“The strcpy() function copies the string pointed to by src,
including the terminating null byte (‘\0’), to the buffer pointed
to by dest. The strings may not overlap, and the destination
string dest must be large enough to receive the copy. Beware of
buffer overruns! (See BUGS.) …
BUGS
If the destination string of a strcpy() is not large enough, then
anything might happen. Overflowing fixed-length string buffers is
a favorite cracker technique for taking complete control of the
machine. Any time a program reads or copies data into a buffer,
the program first needs to check that there’s enough space. This
may be unnecessary if you can show that overflow is impossible,
but be careful: programs can get changed over time, in ways that
may make the impossible possible.”

16

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

17

Memory Safe Systems Programming
Idea 5: Choose your Tools & Languages Carefully

Existing code bases or requirements for a project may dictate what tools you
use. Knowing C is crucial – it is and will remain widely used.
When you you are choosing tools for systems programming, consider languages
that can help guard against programmer error.

• Rust (Mozilla)
• Go (Google)
• Project Verona (Microsoft)

18

Association for Computing Machinery
(ACM) Code of Ethics

https://www.acm.org/code-of-ethics

19

ACM Code of Ethics on Security
2.9 Design and implement systems that are robustly and usably secure.
Breaches of computer security cause harm. Robust security should be a primary consideration
when designing and implementing systems. Computing professionals should perform due
diligence to ensure the system functions as intended, and take appropriate action to secure
resources against accidental and intentional misuse, modification, and denial of service. As
threats can arise and change after a system is deployed, computing professionals should integrate
mitigation techniques and policies, such as monitoring, patching, and vulnerability reporting.
Computing professionals should also take steps to ensure parties affected by data breaches are
notified in a timely and clear manner, providing appropriate guidance and remediation.
To ensure the system achieves its intended purpose, security features should be designed to be as
intuitive and easy to use as possible. Computing professionals should discourage security
precautions that are too confusing, are situationally inappropriate, or otherwise inhibit legitimate
use.
In cases where misuse or harm are predictable or unavoidable, the best option may be to not
implement the system.

https://www.acm.org/code-of-ethics

20

Buffer Overflows
• We must always ensure that memory operations we perform don’t improperly

read or write memory.
• E.g. don’t copy a string into a space that is too small!
• E.g. don’t ask for the string length of an uninitialized string!

• The Valgrind tool may be able to help track down memory-related issues.
• See cs107.stanford.edu/resources/valgrind
• We’ll talk about Valgrind more when we talk about dynamically-allocated memory.
• Valgrind can detect some, but not all, stack-memory-related issues

21

Demo: Memory Errors

memory_errors.c

22

Lecture Plan
• Buffer Overflows, Security and Valgrind
• Review: Pointers
• Strings and Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

23

Strings and Pointers
C strings can be represented as char[] or char *.
• When we create char[], we are creating space for characters
• When we create char *, we are creating space for an address of character(s)
• Strings are implicitly converted to char * when passed as parameters

• E.g. all string functions take char * parameters, but accept char[]

• A char * is technically a pointer to a single character. But we commonly use
char * as string by having the character it points to be followed by more
characters and ultimately a null terminator. But a char * could also just point to
a single character (not a string).

24

Pointers and Memory
A pointer is a variable that stores a memory address.
• Memory is a big array of bytes, and each byte has a

unique numeric index that is commonly written in
hexadecimal. A pointer stores one of these
“indexes”.

• Because there is no pass-by-reference in C like in
C++, pointers let us pass around the address of one
instance of memory, instead of making many copies.

• Pointers are also essential for allocating memory on
the heap, and to refer to memory generically, both
of which we will cover later.

Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

25

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

26

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

27

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

28

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

29

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 3
…

x

val

main()

myFunc()

30

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

31

Pointers
Pointers allow us to pass around the location of data so that the original data
can be modified in other functions.

Example: I want to write a function myFunc that can change the value of an
existing integer to be 3.

int main(int argc, char *argv[]) {
int x = 2;
myFunc(???);
printf("%d", x); // want to print 3
...

}

32

Pointers
int x = 2;

// Make a pointer that stores the address of x.
// (& means "address of")
int *xPtr = &x;

// Dereference the pointer to go to that address.
// (* means "dereference")
printf("%d", *xPtr); // prints 2

If declaration: “pointer”
ex: int * is "pointer to an int”

If operation: "dereference/the value at address”
ex: *num is "the value at address num"

*

33

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

34

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 2
…

xmain()

STACK

35

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

36

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

37

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 3
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

38

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Address Value
…

0x1f0 3
…

xmain()

STACK

39

C Parameters
• If you are performing an operation with some input and do not care about any

changes to the input, pass the data type itself.
• If you are modifying a specific instance of some value, pass the location of

what you would like to modify and dereference that location to access what’s
there.

Do I care about modifying this instance of my
data? If so, I need to pass where that instance
lives, as a parameter, so it can be modified.

40

Pointers Practice
void makeUpper(char *ptr) {

__1__ = toupper(__2__);
}

int main(int argc, char *argv[]) {
char ch = 'h';

// want to modify ch to be capital
makeUpper(__3__);
printf("%c\n", ch); // should print 'H'
return 0;

}

Respond with your thoughts
on PollEv: pollev.com/cs107 or
text CS107 to 22333 once to join.

What should go in each of the
blanks so that this code correctly
modifies ch to be capitalized?

🤔

41

42

Pointers Practice
void makeUpper(char *ptr) {

*ptr = toupper(*ptr);
}

int main(int argc, char *argv[]) {
char ch = 'h';

// want to modify ch to be capital
makeUpper(&ch);
printf("%c\n", ch); // should print 'H'
return 0;

}

What should go in each of the
blanks so that this code correctly
modifies ch to be capitalized?

🤔

43

Lecture Plan
• Buffer Overflows, Security and Valgrind
• Review: Pointers
• Strings and Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

44

char[]
When we declare an array of characters,
contiguous memory is allocated on the stack to
store the contents of the entire array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
...

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…

str

main()

STACK

45

char *
When we declare a char *, we allocate space on
the stack to store an address, not actual characters.
But we can still generally use char * the same as
char[].

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
char *strAlt = str;
...

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
0xf 0x100

…

str

strAlt

main()

STACK

46

Strings as Parameters
When we pass a char array as a parameter, C
makes a copy of the address of the first array
element and passes it (as a char *) to the function.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
...

}

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

47

Strings as Parameters
This means if we modify characters in myFunc,
the changes will persist back in main!

void myFunc(char *myStr) {
myStr[4] = 'y';

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // apply
...

}

Address Value
…

0x105 '\0'
0x104 'y'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

48

Read-only Strings
There is another convenient way to create a string if we do not need to modify it
later. We can create a char * and set it directly equal to a string literal.

char *myString = "Hello, world!";
...
printf("%s", myString); // Hello, world!

49

Address Value
…

0xff0 0x10
…
…

0x12 '\0'
0x11 'i'
0x10 'h'

…

When we declare a char pointer equal to a string
literal, the characters are not stored on the stack.
Instead, they are stored in a special area of
memory called the “data segment”. We cannot
modify memory in this segment.
char *str = "hi";
The pointer variable (e.g. str) refers to the address
of the first character of the string in the data
segment.

strSTACK

DATA SEGMENT

NOTE: not all char * strings are
read-only. Only ones that point to
characters in the data segment are
read-only.

Read-only Strings

50

Read-only Strings
Read-only strings are convenient to use, but make sure to not use a read-only
string in code that tries to modify its characters – it will crash!

char *myString = "Hello, world!";
myString[0] = 'h'; // crashes!

There’s no way in code to check if a string is read-only; it’s up to the
programmer to properly use strings to avoid these crashes.
• E.g. don’t pass in a read-only string as the src to strcpy

strcpy(myString, "Hi"); // crashes!

51

Read-only Strings
A string is read-only if it points to characters that live in the data segment, rather
than memory we can modify.

char *readOnly = "Hi";

char modifiable[6];
strcpy(modifiable, "Hi");

// is ptr read-only?
char *ptr = modifiable;
// no, because it points to characters on the stack
ptr[0] = 'h'; // ok!

52

Read-Only Strings
/* It’s up to programmer using this function to not pass
* a read-only string.
*/
void myFunc(char *myStr) {

myStr[0] = 'h';
}

53

Recap
• Buffer Overflows, Security and Valgrind
• Review: Pointers
• Strings and Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

Lecture 8 takeaway: C
strings are pointers and
arrays. C strings are error-
prone, and issues like buffer
overflows can arise!
Valgrind is a tool that can
help detect memory errors.

