CS107, Lecture 9

Pointers and Arrays

Reading: K&R (5.2-5.5) or Essential C section 6

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: 2 Creative Commons Attribution 2.5 License. All rights reserved.

‘u l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,‘Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

Announcement: CS198 Section Leading

CS198 Slides

https://docs.google.com/presentation/d/1jLDpQalZYWjjGKkNa7C-OzadDMZxG0EAQjDFeiJE-K4/edit

CS107 Topic 3: How can we
effectively manage all types
of memory in our

programs?

CS107 Topic 3

How can we effectively manage all types of memory in our programs?

Why is answering this question important?

* Shows us how we can pass around data efficiently with pointers (this time)

* Introduces us to the heap and allocating memory that we manually manage
(next time)

* Helps us better understand use-after-free vulnerabilities, a common bug (next
week)

assign3: implement a function using resizable arrays to read lines of any length from
a file and write 2 programs using that function to print the last N lines of a file and print

just the unique lines of a file. These programs emulate the tail and uniq Unix
commands!

4

Learning Goals

* Learn about pointers and how they help us access data without making copies
* Understand arrays and how they relate to pointers
* Get more practice using memory diagrams to understand code behavior

Lecture Plan

* Finishing up: Strings and Pointers

* Double Pointers

cp -r /afs/ir/class/csl1l07/lecture-code/lect9 .

Lecture Plan

* Finishing up: Strings and Pointers

* Double Pointers

cp -r /afs/ir/class/csl1l07/lecture-code/lect9 .

* If you are performing an operation with some input and do not care about any
changes to the input, pass the data type itself.

* If you are modifying a specific instance of some value, pass the location of
what you would like to modify and dereference that location to access what’s

there.

Do | care about modifying this instance of my
data? If so, | need to pass where that instance

lives, as a parameter, so it can be modified.

When we declare an array of characters,
contiguous memory is allocated on the stack to
store the contents of the entire array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");

main()

STACK

Address

Value

0x105
0x104
0x103
0x102
ox101
str—_ox100

When we declare a char *, we allocate space on
the stack to store an address, not actual characters.

But we can still generally use char * the same as
char(].

int main(int argc, char *argv[]) { .
char str[6]; main()
strcpy(str, "apple");
char *strAlt = str;

STACK

Address Value
Ox1e5| "\0'

0x104 ‘e’

0x103 1

ox102 | 'p'

ox1e1| 'p'
str—_ox100l 'a’
strAlt oxf [0x100

10

Strings as Parameters

STACK

When we pass a char array as a parameter, C Address Value
makes a copy of the address of the first array B
element and passes it (as a char *) to the function. Tox105| '\o"
. ox104 | “e"
void myFunc(char *myStr) { ox103] *1°
) T main() ox102| 'p’
: ox101 | ‘p"
int main(int argc, char *argv[]) { stp _
©x100
char str[6]; O °
strcpy(str, "apple"); -
myFunc(str);
! .o myFunc() | myStr oxf

Strings as Parameters

STACK

This means if we modify characters in myFunc, Address Value
the changes will persist back in main! -
- 0x105| "\@'
void myFunc(char *myStr) { ox104 [ty
myStr[4] = 'y'; —
} . ©x103 1
main() ox102| 'p’
int main(int argc, char *argv[]) { ox101 | ‘p'
char str[6]; <tp -
S'tr‘pr(S'tr‘, "apple"); i@Xl@@ d
myFunc(str); —

printf("%s", str); // apply
.o myFunc() | myStr oxt

char *

A char * variable refers to a single character. We can reassign an existing char *
pointer to be equal to another char * pointer.

char *str = "apple”; // e.g. Oxfffo
char *str2 = "apple 2"; // e.g. Oxfted
str = str2; // ok! Both store address 0xfe©

13

Arrays and Pointers

STACK

We can also make a pointer equal to an array; Address Value
it will point to the first element in that array. B
C 0x105| '\@'
int main(int argc, char *argv[]) { ox104 | ‘e
char str[6]; -
strcpy(str, "apple"); 0x103 |1
char *ptr = str; main() 0x102 p
Ox101 | “p°
) str—_ox100['a'
ptr GXFS‘(@xl@@

14

Arrays and Pointers

STACK

We can also make a pointer equal to an array; Address Value
it will point to the first element in that array. B
Cox105] "\0'
int main(int argc, char *argv[]) { ox104 | ‘e
char str[6]; -
strcpy(str, "apple"); 0x103 |1
char *ptr = str; main() 0x102 p
ox1el| 'p'
// equivalent str o
—L__9x1600 a
char *ptr = &str[0];
P Lol; ptr ox5%0x100
// confusingly equivalent, avoid -

char *ptr = &str; —

Read-only Strings

There is another convenient way to create a string if we do not need to modify it
later. We can create a char * and set it directly equal to a string literal.

char *myString = "Hello, world!";

printf("%s", myString); // Hello, world!

16

Read-only Strings

When we declare a char pointer equal to a string

literal, the characters are not stored on the stack.

Instead, they are stored in a special area of

memory called the “data segment”. We cannot STACK

Address Value

_ _ _ str Oxffo
modify memory in this segment.
char *str = "hi"; T
The pointer variable (e.g. str) refers to the address Ox12
of the first character of the string in the data DATA SEGMENT ox11
segment. :
NOTE: not all char * strings are ox10
read-only. Only ones that point to

characters in the data segment are
read-only.

@xlq

-\

"\Q'

1

lhl

17

Read-only Strings

Read-only strings are convenient to use, but make sure to not use a read-only
string in code that tries to modify its characters — it will crash!

char *myString = "Hello, world!";
myString[@] = 'h'; // crashes!

There’s no way in code to check if a string is read-only; it’s up to the
programmer to properly use strings to avoid these crashes.

e E.g. don’t pass in a read-only string as the src to strcpy

strcpy(myString, "Hi"); // crashes!

18

Read-only Strings

A string is read-only if it points to characters that live in the data segment, rather
than memory we can modify.

char *readOnly = "Hi";

char modifiable[6];
strcpy(modifiable, "Hi");

// 1is ptr read-only?

char *ptr = modifiable;

// no, because it points to characters on the stack
ptr[@] = 'h'; // ok!

19

Strings In Memory

If we create a string as a char[], we can modify its characters because its memory
lives in our stack space.

We cannot set a char[] equal to another value, because it is not a pointer; it refers
to the block of memory reserved for the original array.

If we pass a char[] asa parameter, set something equal to it, or perform arithmetic
with it, it’s automatically converted to a char *.

We can set a char * equal to another value, because it is a reassign-able pointer.

If we create a new string with new characters as a char *, we cannot modify its
characters because its memory lives in the data segment.

Adding an offset to a C string gives us a substring that many places past the first
character.

If we change characters in a string parameter, these changes will persist outside of the

function.
20

Lecture Plan

* Finishing up: Strings and Pointers

* Double Pointers

cp -r /afs/ir/class/csl1l07/lecture-code/lect9 .

21

We want to write a function that prints out the square of a number. What
should go in each of the blanks?

void printSquare(?) {
int square = ?» * ?
printf("%d", square);

¥

int main(int argc, char *argv[]) {
int num = 3;
printSquare(?); // should print 9

22

We want to write a function that prints out the square of a number. What

should go in each of the blanks?

void printSquare(int x) {
X = X * X;
printf("%d", x);

}

We are performing a calculation with
some input and do not care about any
changes to the input, so we pass the
data type itself.

int main(int argc, char *argv[]) {

int num = 3;

printSquare(num); // should print S

We want to write a function that flips the case of a letter. What should go in
each of the blanks?

void flipCase(?) {
if (isupper(2)) {
o= ?
} else if (islower(__?)) {
> =7
}

—_— —_)

¥

int main(int argc, char *argv[]) {
char ch = "g’;
flipCase(_?);
printf("%c", ch); // want this to print ‘G’

24

We want to write a function that flips the case of a letter. What should go in

each of the blanks?

void flipCase(char *letter) {
if (isupper(*letter)) {
*letter = tolower(*letter);
} else if (islower(*letter)) {
*letter = toupper(*letter);
}

¥

int main(int argc, char *argv[]) {
char ch = 'g';
flipCase(&ch);

We are modifying a specific
instance of the letter, so we pass
the location of the letter we would
like to modify.

printf("%c", ch); // want this to print ‘G’

Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to. E.g. we want to write a function skipSpaces that

modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

Respond with your thoughts

void skipSpaces(1) { on PollEv: pollev.com/cs107 or
text CS107 to 22333 once to join.

}

int main(int argc, char *argv[]) {
char *str = " hello”;
skipSpaces(2); Kéi)
printf("%s", str); // should print "hello" ¥

Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to. E.g. we want to write a function skipSpaces that
modifies a string pointer to skip past any initial spaces. What should go in each

of the blanks?

void skipSpaces(char **strPtr) {

¥

int main(int argc, char *argv[]) {

We are modifying a specific
instance of the string pointer, so
we pass the location of the string
pointer we would like to modify.

char *str = " hello";
skipSpaces(&str);
printf("%s", str); // should print "hello™

27

Pointers to Strings

. . Address Value
void skipSpaces(char **strPtr) {

3 = k 1] n .
int numSpaces strsPn(strPtr,); STACK| main(
strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces (&myStr);
printf("%s\n", myStr); // hi
return 0;

28

Pointers to Strings

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr,
*strPtr += numSpaces;

)

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces (&myStr);
printf("%s\n", myStr); // hi
return 0;

}

STACK

Address

Value

e

———— —_—

DATA SEGMENT

main() myStr ©x105

Ox13
Ox12
Ox11
Ox10

Oxf

GX'F\

29

Pointers to Strings

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr,
*strPtr += numSpaces;

)

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces (&myStr);
printf("%s\n", myStr); // hi
return 0;

}

STACK

Address

Value

e

———— —_—

DATA SEGMENT

main() myStr ©x105

Ox13
Ox12
Ox11
Ox10

Oxf

GX'F\

30

Pointers to Strings

. . Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " ");
} *strPtr += numSpaces; main() myStroxies
int main(int argc, char *argv[]) { STACK T
char *myStr = " hi"; :
skipSpages(&myStr); ? skipSpaces() strPtr 0xfo
printf("%s\n", myStr); // hi
return 0; o o -
) .
Ox13 | "\0"
ox12| ‘1i°

DATASEGMENT | gy11| 'h'

ox10| °* °

oxf| ' ' W

o1

Pointers to Strings

. . Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); N
*strPtr += numSpaces; main() myStroxies
}
int main(int argc, char *argv[]) { STACK [
char *myStr = " hi"; strPtr 0xfo
skipSpaces (&mystr); . skipSpaces()
printf("%s\n", myStr); // hi numSpaces 0xes
return 0;
} - - -
Ox13 | "\0"
ox12| ‘1i°

DATASEGMENT | 5. 11 ['

ox10| °* °

oxf| ' ' W

Pointers to Strings

. . Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); N
*strPtr += numSpaces; main() myStroxies
}
int main(int argc, char *argv[]) { STACK [
5k _ n LI |
char *myStr = h} ; strPtr 0xfo
skipSpaces (&mystr); . skipSpaces()
printf("%s\n", myStr); // hi numSpaces 0xes
return 0;
} - - I
ox13| "\0'
ox12| ‘i’

DATASEGMENT | 5. 11 ['

ox10| °* °

oxf| ' ' W

Pointers to Strings

Address Value

void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); N
*strPtr += numSpaces; main() myStroxies _ex1l
}
int main(int argc, char *argv[]) { STACK [
k _ n LI |
char *myStr = h} ; strPtr 0xfo
sk}pSpaces(&myStr), . skipSpaces()
printf("%s\n", myStr); // hi numSpaces 0xes
return 0;
} - - -
Ox13| "\0"
ox12| ‘i’

DATASEGMENT | 5,11 ['h' vy

ox10| °* °
oxf| ' '

Pointers to Strings

. . Address Value
void skipSpaces(char **strPtr) {

e

int numSpaces = strspn(*strPtr, " "); o
*strPtr += numSpaces; STACK main() myStrexies ox11
} \
int main(int argc, char *argv[]) { B o \
char *myStr = " hi"; ‘o
skipSpaces (&myStr); Ox13)| '\@
printf("%s\n", myStr); // hi ox12 | ‘i°
return 0, DATA SEGMENT ox11| 'h’
}
oxi10| * °
oxf| * !

35

Pointers to Strings

Address Value

void skipSpaces(char **strPtr) {

e

int numSpaces = strspn(*strPtr, " "); o
*strPtr += numSpaces; STACK main() myStrexies ox11
} \
int main(int argc, char *argv[]) { B o \
char *myStr = " hi"; N
skipSpaces (&myStr); Ox13)| '\@
printf("%s\n", myStr); // hi ox12 | ‘i°
return 0, DATA SEGMENT ox11| 'h’
}
oxi10| * °
oxf| * !

Weird thought — 0x11 /s a string.

36

Making Copies

. . Address Value
void skipSpaces(char *strPtr) {

int numSpaces = strspn(strPtr, " ");
} strPtr += numSpaces; main() myStroexies Oxfy
int main(int argc, char *argv[]) { STACK T
char *myStr = " hi"; :
skipSpages(myStr); ? skipSpaces() strPtr 0xfo
printf("%s\n", myStr); // hi
return 0; o o -
}
Ox13
Ox12
This advances skipSpace’s own DATA SEGMENT ox11

copy of the string pointer, not the
Instance in main.

Ox10
Oxf

* Finishing up: Strings and Pointers Lecture 9 takeaway:
* Double Pointers pointers let us store the
‘ addresses of data and pass

them as parameters. We
can use double pointers if
we want to change the value
of a pointer in another
function.

38

Extra Practice

2. char* vs cha

Suppose we use a // initialize as below
variable str A str = str + 1;
as follows: B str[1] = "u’;

C printf("%s", str)

1. char str[7]; 2.
strcpy(str, "Hellol");

3. char arr[7]; 4.

strcpy(arr, "Hello3");
char *str = arr;

r[] exercises

* Will there be a compile
error/segfault?
* If no errors, what is printed?

For each of the following initializations:

char *str = "Hello2";

char *ptr = "Hello4";
char *str ptr;

\

40

2. char* vs char|[] exercises

Suppose we use a // initialize as below For each of the following initializations:

variable str A str = str + 1;
as follows: B str[l] = "u’;
C printf("%s", str)

1. char str[7];
strcpy(str, "Hellol");

Line A: Compile error
(cannot reassign array)

3. char arr[7];

strcpy(arr, "Hello3");
char *str = arr;

Prints eulo3

* Will there be a compile
error/segfault?
* If no errors, what is printed?

char *str = "Hello2";

Line B: Segmentation fault
(string literal)

char *ptr = "Hello4";
char *str = ptr;

Line B: Segmentation fault
(string literal)

41

3. Bonus: Tricky addresses

1 void tricky_ addresses() {

2 char buf[] = "Local"; What is stored in each
3 char *ptrl = buf; variable?

4 char **double ptr = &ptril;

5 printf("ptrl's value: %p\n", ptrl);

6 printf("ptrl’s deref : »c\n", *ptrl);

7 printf(" address: %p\n", &ptrl);

8 printf("double ptr value: %p\n", double ptr);

9 printf("buf's address: %p\n", &buf);

10 char *ptr2 = &buf;
11 printf("ptr2's value: %s\n", ptr2);
12 }

°)

42

3. Bonus: Tricky addresses

1 void tricky_ addresses() {

2 char buf[] = "Local"; bufl L' o' | 'c' | 'a' | '1' | "\o
3 char *ptrl = buf;

4 char **double ptr = &ptril;

5 printf("ptrl's value: %p\n", ptrl);

6 printf("ptrl’s deref : %c\n", *ptrl);

7 printf(" address: Z%p\n", &ptrl);

8 printf("double ptr value: %p\n", double ptr); ptri
9 printf("buf's address: %p\n", &buf);

10 char *ptr2 = &buf; double
11 printf("ptr2's value: %s\n", ptr2); _ptr
12 }

While Line 10 raises a compiler ptr2

warning, functionally it will still work—
because pointers are addresses.

43

Pen and paper: A * Wars Story

1 void binky() A

, int a = 10; * Lines 2-5: Draw a diagram.

3 int b = 20; * Line 7: Update your diagram.

4 int *p = 8a; * Line 8: Update your diagram.
ﬁ>5 int *g = &b;

6 a 10 m oxFfe800

7 *p = *q; -

8 p = g; m

9 3 b 20 | q | oxffe804

°)

P
-,

6

44

Pen and paper: A * Wars Story

1 void binky() A
, int a = 10; * Lines 2-5: Draw a diagram.
3 int b = 20; * Line 7: Update your diagram.
4 int *p = 8a; * Line 8: Update your diagram.
5 int *g = &b;
6 a 20 m oxFfe800

D7 *p = *g;
8 p = g; m
9 3 b 20 | q | oxffe804

45

"

Pen and paper: A * Wars Story

1 void binky() A

2 int a = 10;
3 int b = 20;
4 int *p = &a;
5 int *g = &b;
6

7 *p = *q;

8 P =q;

9 }

* Lines 2-5: Draw a diagram.
* Line 7: Update your diagram.
* Line 8: Update your diagram.

20

20

p Oxffe804

d Oxffe804

46

* Wars: Episode I (of 2)

In variable declaration, * creates a pointer.

char ch = 'r

J

char *cptr = &ch;

char **strptr

&cptr;

ch stores a char ch

cptr stores an address of

a char cptr Lr\ oxto
(points to a char)

strptr stores an address of
a char *

(points to a char *) strptr

47

* Wars: Episode 1I (of 2)

In reading values from/storing values, * dereferences a pointer.

char ch = 'r'; Increment value stored in ch ch I 's’ |
ch = ch + 1;

48

* Wars: Episode 1I (of 2)

In reading values from/storing values, * dereferences a pointer.

char *cptr = &ch;
*cptr = *cptr + 1;

Increment value stored at
memory address in cptr
(increment char pointed to)

ch

cptr

\ Oxfo

49

* Wars: Episode 1I (of 2)

In reading values from/storing values, * dereferences a pointer.

char **strptr = &cptr; Increment value stored at \

*strptr = *strptr + 1; memory address in cptr
(increment address pointed to)

strptr \ oxes

50

Skip spaces

void skip_ spaces(char **p str) { A 1 a1] e

1

2 int num = strspn(*p_str, " "); ' 1l

3 *p str = *p str + num; ctp [:i:::T\‘\~
4 }

5

6

. :

3

int main(int argc, char *argv[]){
char *str = " Hil";
skip_spaces(&str);

printf("%s", str); // "Hi!" str

9 return 0; p_str
10 }
What diagram most accurately depicts C. Lt tH |] e
program state at Line 4 (before | Cj
skip_ spaces returns to main)? St p_str

51

Skip spaces

void skip_ spaces(char **p str) { A 1 a1] e

1

2 int num = strspn(*p_str, " "); ' 1l

3 *p str = *p str + num; ctp [:i:::T\‘\~
4 }

5

6

. :

3

int main(int argc, char *argv[]){
char *str = " Hil";
skip_spaces(&str);

printf("%s", str); // "Hi!" str

9 return 0; p_str
10 }
What diagram most accurately depicts C. Lt tH |] e
program state at Line 4 (before |
skip spaces returns to main)? Str p_str

52

