
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 9
Pointers and Arrays

Reading: K&R (5.2-5.5) or Essential C section 6

😷 masks recommended

2

Announcement: CS198 Section Leading

CS198 Slides

https://docs.google.com/presentation/d/1jLDpQalZYWjjGKkNa7C-OzadDMZxG0EAQjDFeiJE-K4/edit

3

CS107 Topic 3: How can we
effectively manage all types

of memory in our
programs?

4

CS107 Topic 3
How can we effectively manage all types of memory in our programs?

Why is answering this question important?
• Shows us how we can pass around data efficiently with pointers (this time)
• Introduces us to the heap and allocating memory that we manually manage

(next time)
• Helps us better understand use-after-free vulnerabilities, a common bug (next

week)

assign3: implement a function using resizable arrays to read lines of any length from
a file and write 2 programs using that function to print the last N lines of a file and print
just the unique lines of a file. These programs emulate the tail and uniq Unix
commands!

5

Learning Goals
• Learn about pointers and how they help us access data without making copies
• Understand arrays and how they relate to pointers
• Get more practice using memory diagrams to understand code behavior

6

Lecture Plan
• Finishing up: Strings and Pointers
• Double Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect9 .

7

Lecture Plan
• Finishing up: Strings and Pointers
• Double Pointers
•

cp -r /afs/ir/class/cs107/lecture-code/lect9 .

8

C Parameters
• If you are performing an operation with some input and do not care about any

changes to the input, pass the data type itself.
• If you are modifying a specific instance of some value, pass the location of

what you would like to modify and dereference that location to access what’s
there.

Do I care about modifying this instance of my
data? If so, I need to pass where that instance
lives, as a parameter, so it can be modified.

9

char[]
When we declare an array of characters,
contiguous memory is allocated on the stack to
store the contents of the entire array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
...

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…

str

main()

STACK

10

char *
When we declare a char *, we allocate space on
the stack to store an address, not actual characters.
But we can still generally use char * the same as
char[].

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
char *strAlt = str;
...

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
0xf 0x100

…

str

strAlt

main()

STACK

11

Strings as Parameters
When we pass a char array as a parameter, C
makes a copy of the address of the first array
element and passes it (as a char *) to the function.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
...

}

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

12

Strings as Parameters
This means if we modify characters in myFunc,
the changes will persist back in main!

void myFunc(char *myStr) {
myStr[4] = 'y';

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // apply
...

}

Address Value
…

0x105 '\0'
0x104 'y'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

13

char *

A char * variable refers to a single character. We can reassign an existing char *
pointer to be equal to another char * pointer.

char *str = "apple"; // e.g. 0xfff0
char *str2 = "apple 2"; // e.g. 0xfe0
str = str2; // ok! Both store address 0xfe0

14

Arrays and Pointers
We can also make a pointer equal to an array;
it will point to the first element in that array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
char *ptr = str;
...

}

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'
0xf8 0x100

…

str
ptr

main()

STACK

15

Arrays and Pointers
We can also make a pointer equal to an array;
it will point to the first element in that array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
char *ptr = str;

// equivalent
char *ptr = &str[0];

// confusingly equivalent, avoid
char *ptr = &str;
...

}

STACK
Address Value

…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'
0xf8 0x100

…

str
ptr

main()

16

Read-only Strings
There is another convenient way to create a string if we do not need to modify it
later. We can create a char * and set it directly equal to a string literal.

char *myString = "Hello, world!";
...
printf("%s", myString); // Hello, world!

17

Address Value
…

0xff0 0x10
…
…

0x12 '\0'
0x11 'i'
0x10 'h'

…

When we declare a char pointer equal to a string
literal, the characters are not stored on the stack.
Instead, they are stored in a special area of
memory called the “data segment”. We cannot
modify memory in this segment.
char *str = "hi";
The pointer variable (e.g. str) refers to the address
of the first character of the string in the data
segment.

strSTACK

DATA SEGMENT

NOTE: not all char * strings are
read-only. Only ones that point to
characters in the data segment are
read-only.

Read-only Strings

18

Read-only Strings
Read-only strings are convenient to use, but make sure to not use a read-only
string in code that tries to modify its characters – it will crash!

char *myString = "Hello, world!";
myString[0] = 'h'; // crashes!

There’s no way in code to check if a string is read-only; it’s up to the
programmer to properly use strings to avoid these crashes.
• E.g. don’t pass in a read-only string as the src to strcpy

strcpy(myString, "Hi"); // crashes!

19

Read-only Strings
A string is read-only if it points to characters that live in the data segment, rather
than memory we can modify.

char *readOnly = "Hi";

char modifiable[6];
strcpy(modifiable, "Hi");

// is ptr read-only?
char *ptr = modifiable;
// no, because it points to characters on the stack
ptr[0] = 'h'; // ok!

20

Strings In Memory
1. If we create a string as a char[], we can modify its characters because its memory

lives in our stack space.
2. We cannot set a char[] equal to another value, because it is not a pointer; it refers

to the block of memory reserved for the original array.
3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic

with it, it’s automatically converted to a char *.
4. We can set a char * equal to another value, because it is a reassign-able pointer.
5. If we create a new string with new characters as a char *, we cannot modify its

characters because its memory lives in the data segment.
6. Adding an offset to a C string gives us a substring that many places past the first

character.
7. If we change characters in a string parameter, these changes will persist outside of the

function.

21

Lecture Plan
• Finishing up: Strings and Pointers
• Double Pointers
•

cp -r /afs/ir/class/cs107/lecture-code/lect9 .

22

Exercise 1
We want to write a function that prints out the square of a number. What
should go in each of the blanks?

void printSquare(__?__) {
int square = __?__ * __?__;
printf("%d", square);

}

int main(int argc, char *argv[]) {
int num = 3;
printSquare(__?__); // should print 9

}

23

Exercise 1
We want to write a function that prints out the square of a number. What
should go in each of the blanks?

void printSquare(int x) {
x = x * x;
printf("%d", x);

}

int main(int argc, char *argv[]) {
int num = 3;
printSquare(num); // should print 9

}

We are performing a calculation with
some input and do not care about any
changes to the input, so we pass the
data type itself.

24

Exercise 2
We want to write a function that flips the case of a letter. What should go in
each of the blanks?

void flipCase(__?__) {
if (isupper(__?__)) {

__?__ = __?__;
} else if (islower(__?__)) {

__?__ = __?__;
}

}

int main(int argc, char *argv[]) {
char ch = 'g';
flipCase(__?__);
printf("%c", ch); // want this to print ‘G’

}

25

Exercise 2
We want to write a function that flips the case of a letter. What should go in
each of the blanks?

void flipCase(char *letter) {
if (isupper(*letter)) {

*letter = tolower(*letter);
} else if (islower(*letter)) {

*letter = toupper(*letter);
}

}

int main(int argc, char *argv[]) {
char ch = 'g';
flipCase(&ch);
printf("%c", ch); // want this to print ‘G’

}

We are modifying a specific
instance of the letter, so we pass
the location of the letter we would
like to modify.

26

Exercise 3
Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to. E.g. we want to write a function skipSpaces that
modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

void skipSpaces(__1__) {
...

}

int main(int argc, char *argv[]) {
char *str = " hello";
skipSpaces(__2__);
printf("%s", str); // should print "hello"

}

Respond with your thoughts
on PollEv: pollev.com/cs107 or
text CS107 to 22333 once to join.

🤔

27

Exercise 3
Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to. E.g. we want to write a function skipSpaces that
modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

void skipSpaces(char **strPtr) {
...

}

int main(int argc, char *argv[]) {
char *str = " hello";
skipSpaces(&str);
printf("%s", str); // should print "hello"

}

We are modifying a specific
instance of the string pointer, so
we pass the location of the string
pointer we would like to modify.

28

Pointers to Strings
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

Address Value
…
…

main()STACK

29

Pointers to Strings
Address Value

…
0x105 0xf

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

myStr

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

main()STACK

30

Pointers to Strings
Address Value

…
0x105 0xf

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

myStr

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

main()STACK

31

Pointers to Strings
Address Value

…
0x105 0xf

…
…

0xf0 0x105
…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStr

strPtr

main()

skipSpaces()

STACK

32

Pointers to Strings
Address Value

…
0x105 0xf

…
…

0xf0 0x105
0xe8 2

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStr

strPtr
numSpaces

main()

skipSpaces()

STACK

33

Pointers to Strings
Address Value

…
0x105 0xf

…
…

0xf0 0x105
0xe8 2

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStr

strPtr
numSpaces

main()

skipSpaces()

STACK

34

Pointers to Strings
Address Value

…
0x105 0x11

…
…

0xf0 0x105
0xe8 2

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStr

strPtr
numSpaces

main()

STACK

skipSpaces()

35

Pointers to Strings
Address Value

…
0x105 0x11

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStrSTACK main()

36

Pointers to Strings
Address Value

…
0x105 0x11

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStrmain()STACK

Weird thought – 0x11 is a string.

37

Making Copies
Address Value

…
0x105 0xf

…
…

0xf0 0xf
…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char *strPtr) {
int numSpaces = strspn(strPtr, " ");
strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStr

strPtr

main()

skipSpaces()

STACK

This advances skipSpace’s own
copy of the string pointer, not the
instance in main.

38

Recap
• Finishing up: Strings and Pointers
• Double Pointers
•

Lecture 9 takeaway:
pointers let us store the
addresses of data and pass
them as parameters. We
can use double pointers if
we want to change the value
of a pointer in another
function.

39

Extra Practice

40

2. char* vs char[] exercises
Suppose we use a
variable str
as follows:

For each of the following initializations:
• Will there be a compile

error/segfault?
• If no errors, what is printed?

// initialize as below
A str = str + 1;
B str[1] = 'u’;
C printf("%s", str)

🤔

1. char str[7];
strcpy(str, "Hello1");

2. char *str = "Hello2";

3. char arr[7];
strcpy(arr, "Hello3");
char *str = arr;

4. char *ptr = "Hello4";
char *str = ptr;

41

2. char* vs char[] exercises
Suppose we use a
variable str
as follows:

For each of the following initializations:
• Will there be a compile

error/segfault?
• If no errors, what is printed?

// initialize as below
A str = str + 1;
B str[1] = 'u’;
C printf("%s", str)

1. char str[7];
strcpy(str, "Hello1");

2. char *str = "Hello2";

3. char arr[7];
strcpy(arr, "Hello3");
char *str = arr;

4. char *ptr = "Hello4";
char *str = ptr;

Line A: Compile error
(cannot reassign array)

Line B: Segmentation fault
(string literal)

Prints eulo3
Line B: Segmentation fault
(string literal)

42

3. Bonus: Tricky addresses
void tricky_addresses() {
char buf[] = "Local";
char *ptr1 = buf;
char **double_ptr = &ptr1;
printf("ptr1's value: %p\n", ptr1);
printf("ptr1’s deref : %c\n", *ptr1);
printf(" address: %p\n", &ptr1);
printf("double_ptr value: %p\n", double_ptr);
printf("buf's address: %p\n", &buf);

char *ptr2 = &buf;
printf("ptr2's value: %s\n", ptr2);

}

1
2
3
4
5
6
7
8
9

10
11
12

What is stored in each
variable?

🤔

43

3. Bonus: Tricky addresses
void tricky_addresses() {
char buf[] = "Local";
char *ptr1 = buf;
char **double_ptr = &ptr1;
printf("ptr1's value: %p\n", ptr1);
printf("ptr1’s deref : %c\n", *ptr1);
printf(" address: %p\n", &ptr1);
printf("double_ptr value: %p\n", double_ptr);
printf("buf's address: %p\n", &buf);

char *ptr2 = &buf;
printf("ptr2's value: %s\n", ptr2);

}

1
2
3
4
5
6
7
8
9

10
11
12

ptr1

0x10

0x18
double
_ptr

ptr2

0x20

0x28 0x29 0x2a 0x2b 0x2c 0x2d

'L' 'o' 'c' 'a' 'l' '\0'buf

While Line 10 raises a compiler
warning, functionally it will still work—
because pointers are addresses.

44

0xffe808

0xffe800

Pen and paper: A * Wars Story
void binky() {

int a = 10;
int b = 20;
int *p = &a;
int *q = &b;

*p = *q;
p = q;

}

🤔

1
2
3
4
5
6
7
8
9

• Lines 2-5: Draw a diagram.
• Line 7: Update your diagram.
• Line 8: Update your diagram.

a
0xffe800

10 p

b

0xffe804

20

0xffe810

0xffe804q

45

Pen and paper: A * Wars Story
void binky() {

int a = 10;
int b = 20;
int *p = &a;
int *q = &b;

*p = *q;
p = q;

}

1
2
3
4
5
6
7
8
9

• Lines 2-5: Draw a diagram.
• Line 7: Update your diagram.
• Line 8: Update your diagram.

0xffe808

0xffe800a
0xffe800

10 p

b

0xffe804

20

0xffe810

0xffe804q

20

46

Pen and paper: A * Wars Story
void binky() {

int a = 10;
int b = 20;
int *p = &a;
int *q = &b;

*p = *q;
p = q;

}

1
2
3
4
5
6
7
8
9

• Lines 2-5: Draw a diagram.
• Line 7: Update your diagram.
• Line 8: Update your diagram.

0xffe808

0xffe800a
0xffe800

20 p

b

0xffe804

20

0xffe810

0xffe804q

0xffe804

47

* Wars: Episode I (of 2)
In variable declaration, * creates a pointer.

char ch = 'r';

char *cptr = &ch;

char **strptr = &cptr;

ch stores a char

cptr stores an address of
a char
(points to a char)

strptr stores an address of
a char *
(points to a char *)

ch

0xf0

'r'

cptr

0xe8

0xf0

strptr

0xe0

0xe8

48

* Wars: Episode II (of 2)
In reading values from/storing values, * dereferences a pointer.

char ch = 'r';
ch = ch + 1;

char *cptr = &ch;

char **strptr = &cptr;

Increment value stored in ch ch

0xf0

'r'

cptr

0xe8

0xf0

strptr

0xe0

0xe8

's'

49

* Wars: Episode II (of 2)
In reading values from/storing values, * dereferences a pointer.

char ch = 'r';
ch = ch + 1;

char *cptr = &ch;
*cptr = *cptr + 1;

Increment value stored in ch

Increment value stored at
memory address in cptr
(increment char pointed to)

ch

0xf0

's'

cptr

0xe8

0xf0

strptr

0xe0

0xe8

char **strptr = &cptr;

't'

50

0xe8

0xf0

* Wars: Episode II (of 2)
In reading values from/storing values, * dereferences a pointer.

char ch = 'r';
ch = ch + 1;

char *cptr = &ch;
*cptr = *cptr + 1;

char **strptr = &cptr;
*strptr = *strptr + 1;

Increment value stored in ch

Increment value stored at
memory address in cptr
(increment char pointed to)

Increment value stored at
memory address in cptr
(increment address pointed to)

cptr

strptr

0xe0

0xe8

ch

0xe8

0xf1

0xf1

?

0xf0

't'

51

Skip spaces
void skip_spaces(char **p_str) {

int num = strspn(*p_str, " ");
*p_str = *p_str + num;

}
int main(int argc, char *argv[]){

char *str = " Hi!";
skip_spaces(&str);
printf("%s", str); // "Hi!"
return 0;

}

🤔

1
2
3
4
5
6
7
8
9

10

What diagram most accurately depicts
program state at Line 4 (before
skip_spaces returns to main)?

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

str
p_str

' ' ' ' 'H' 'i' '!' '\0'

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

A.

B.

C.

52

Skip spaces

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

str
p_str

' ' ' ' 'H' 'i' '!' '\0'

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

A.

B.

C.

void skip_spaces(char **p_str) {
int num = strspn(*p_str, " ");
*p_str = *p_str + num;

}
int main(int argc, char *argv[]){

char *str = " Hi!";
skip_spaces(&str);
printf("%s", str); // "Hi!"
return 0;

}

1
2
3
4
5
6
7
8
9

10

What diagram most accurately depicts
program state at Line 4 (before
skip_spaces returns to main)?

