Pointers and Generics

Recall our generic swap function from class (reproduced below). It is used to make two
values trade places in memory, and is commonly used in sorting arrays. There’s a right way
to call this swap function in normal circumstances, but we're asking you to use it a bit
“creatively” to achieve particular results. Note: what matters for the correctness of these
results is that if you were to print the contents of what ptrl and ptr2 point to (see comment
in code), it would match the “after.”

void swap(void *a, void *b, size t sz) {
char tmp[sz];
memcpy(tmp, a, sz);
memcpy(a, b, sz);
memcpy (b, tmp, sz);
}

(a) Complete the mixup1l function to create this before and after result. Your solution must
consist of ONLY completing the arguments of the one call to swap, as shown.
Before: After:

ptrl ptr2 ptrl ptr2
R A S
1 6 8 6
2 7 9 7
3 8 10 1
4 9 4 2
5 10 5 3

void mixupl(int *ptrl, int *ptr2) {

swap (,

)s

(b) Complete the mixup2 function to create this before & after result. Your solution must
consist of ONLY completing the arguments of the one call to swap, as shown. In this case,

the third argument should not be edited other than to specify a single argument (that
should be a standard type) to sizeof ().

Before: After:
ptrl ptr2 ptrl ptr2
o -
1 6 6 1
2 7 7 2
3 8 8 3
4 9 9 4
5 10 10 5
void mixup2(int *ptrl, int *ptr2) {
swap(,
sizeof());
}

Assembly

Consider the following x86-64 code output by gcc using the settings we use for this class (-0g):

<ham>:
mov (%rdi),%eax
lea (%rax,%rax,2),%esi
add %»esi,%esi
mov $0x0,%ecx
imul $0x31,%esi
jmp L1
L3:
lea (%rcx,%rax,1),%edx
movslqg %edx,%rdx
mov %esi, (%rdi,%rdx,4)
add $0x2,%eax
jmp L2
L4:
mov %»ecx, seax
L2:
cmp $0x9, %eax
jle L3
add $0x3,%ecx
L1:
cmp $0x9, %ecx
jle L4
mov $0xa,%eax

retq

(a) Fill in the C code below so that it is consistent with the above x86-64 code. Your C code
should fit the blanks as shown, so do not try to squeeze in additional lines or otherwise
circumvent this (this may mean slightly adjusting the syntax or style of your initial
decoding guess to an equivalent version that fits). Your C code should not include any
casting. Note that with the compiler set to -0g, some optimization has been performed.
One thing you’ll notice right away is that gcc chose not to create an actual eliza array, but
instead kept track of its values in other ways. We will ask about optimizations in more
detail in later parts of this question.

int ham(int *burr) {
int eliza[4];
eliza[0] = 7;

eliza[l] = 7;

eliza[2] = 1;

eliza[3] = * burr[0]; // part (b)

for (int 1 = 0; i < ; i+=) {
for (int j = i J < A) {

burr[] = eliza[O0]*eliza[l]*eliza[2]*eliza[3]; //(c)

}

}

if (eliza[0] > eliza[l]) { // part (4)

return 8;

}
if (burr[0] < burr[l] && burr[0] > burr[l]) { // part (4)
return 9;

}

return ;

(b) Refer back to the C code, on the line marked for part (b). It reads:
eliza[3] = .. * burr[0];

Name and explain the instruction(s) that implement this product, and explain why gcc
would choose to do it that way.

Assembly

For the following parts, to the following x86-64 code output by gcc using the settings we use for
this class (-0g):

<ham>:
40052d: shl $0x4,%edi
400530: mov %»edi,%rod
400533 mov %»edi,%rlod
400536 mov $0x0, %eax
40053b: lea ox2(%rdi),%edi
40053e: jmp 400562 <ham+0x35>
400540: movslqg %edx,%rcx
400543 add (%rsi,%r8,8),%rcx
400547 : movb $0x58, (%rcx)
40054a: add %rad, %eax
40054d: add $0x3, %edx
400550: jmp 40055a <ham+0x2d>
400552 : mov $0x0, %edx
400557 movslqg %rled,%r8
40055a: cmp %edx,%edi
40055c: jg 400540 <ham+0x13>
40055e: sub $0x1,%ri0d
400562 : test %riled,%ried
400565 jg 400552 <ham+0x25>

400567 : repz retq

(a) Fill in the C code below so that it is consistent with the above x86-64 code. Your C code
should fit the blanks as shown, so do not try to squeeze in additional lines or otherwise
circumvent this (this may mean slightly adjusting the syntax or style of your initial
decoding guess to an equivalent version that fits). Your C code should not include any
casting. Note that with the compiler set to -0g, some optimization has been performed.
We will ask about optimizations in more detail in later parts of this question. There is an
ASCII table on the following page.

int ham(int aaron, char **alex)

{
int burr = ;
for (int i = * . /* see part (b) */
o ;)
for (int j = ; § < :
) o
alex[i][j] = 'X';
= ;
}
}

return burr;

|
ASCII Character Codes (Decimal)

0 Ctrl-@ 32 Space 64 @ 96

1 Ctrl-A 33 ! 65 A 97 a
2 Ctrl-B 34 " 66 B 98 b
3 Ctrl-C 35 # 67 C 99 c
4 Ctrl-D 36 $ 68 D 100 d
5 Ctrl-E 37 % 69 E 101 e
6 Ctrl-F 38 & 70 F 102 f
7 Ctrl-G 39 ' 71 G 103 g
8 Backspace 0 (72 H 104 h
9 Tab 41) 73 I 105 i
10 Ctrl-) 42 * 74 J 106 i
11 Ctrl-K 43 + 75 K 107 k
12 Ctri-L 44 , 76 L 108 |
13 Return 45 - 77 M 109 m
14 Ctri-N 46 . 78 N 110 n
15 Ctrl-0 47 / 79 0] 111 o
16 Ctrl-P 48 0 80 P 112 p
17 Ctrl-Q 49 1 81 Q 113 q
18 Ctrl-R 50 2 82 R 114 r
19 Ctrl-S 51 3 83 S 115 s
20 Ctrl-T 52 4 84 T 116 t
21 Ctrl-U 53 5 85 U 117 u
22 Ctrl-v 54 6 86 \" 118 v
23 Ctrl-w 55 7 87 W 119 w
24 Ctrl-X 56 8 88 X 120 X
25 Ctrl-Y 57 9 89 Y 121 Yy
26 Ctrl-Z 58 90 Z 122 z
27 Escape 59 ; 91 [123 {
28 Ctrl-\ 60 < 92 \ 124 |
29 Ctrl-] 61 = 93 1 125 }
30 Ctrl-~ 62 > 94 A 126 ~
31 Ctrl-_ 63 ? 95 127 Delete

(b) Refer back to the C code for ham, on the line marked for part (b) (a multiply operator
between two blanks). Name and explain the instruction(s) that calculate this
multiplication, and how/why gcc optimized here:

(c) Refer to the following C and x86-64 code:

int eliza(char *peggy)

{
int len = strlen(peggy);
if (len == 8) return 8;
else return len;

}

<eliza>: // optimized (-02)
400569 sub $0x8,%rsp
40056d: callg 400410 <strlen@plt>
400572 add $0x8,%rsp
400576: retq

You'll notice for eliza that although the C code includes an if statement, there are no conditional
jumps in the assembly code. Explain how/why gcc optimized here.

Assembly

Consider the following x86-64 code output by gcc using the settings we use for this class. This
function calls another function, story, and you will be asked to reverse-engineer both of them.

0000000000400511 <schuyler>:

400511 push %rbx

400512: sub $0x10,%rsp

400516 mov %edi, %ebx

400518: mov $0x4005c4, %edx
40051d: lea oxc(%rsp),%rsi
400522 callqg 4004ed <story>
400527 : lea (%rbx,%rax,2),%eax
40052a: add $0x10,%rsp

40052e: pop %rbx

40052f: retq

(a) Fill in the C code below so that it is consistent with the x86-64 code above for schuyler.
Your C code should fit the blanks as shown, so do not try to squeeze in additional lines or
otherwise circumvent this. This may mean adjusting the syntax, style, or expression of
your initial decoding guess to an equivalent version that fits the structure of the provided
C code. All int literals in your C code must be written in decimal.

int schuyler(int peggy)

¢ int angelica;
int eliza = story(’
; "helpless");
*= 2;
return + 7
}

10

(b) Now fill in the story function. Note that you aren’t expected to have memorized the
precise ASCII value of the letter 'f' that appears in the C code, but you should be able to
infer its hexadecimal value in the x86-64 code, and thus be able to complete the line of
code. All int literals in your C code must be written in decimal.

00000000004004ed <story>:

4004ed: cmpb $0x66, (%rdx)
400410: jne 400416 <story+0x9>
4004F2: mov %edi, (%rsi)

4004F4: jmp 4004fc <story+Oxf>
40046 : movl $0x18, (%rsi)
4004fc: mov $0x0, %eax

400501: jmp 400509 <story+0xlc>
400503 add $0x4c,%eax

400506 sub $0x2,%edi

400509 test %edi,%edi

40050b: jns 400503 <story+0x16>
40050d: lea (%rax,%rax,2),%eax
400510: retq

int story(int raise, int *glass, char *freedom)

-e

-e

{
if (== "£") {
} else {
}

int tonight =

~e

for (int i = i>0; i -=)

~e

tonight +=

~e

return *

-e

