This exam is based on the CS107 winter 2018 final exam by instructor Chris Gregg.

Problem 1 (Generics)

@

int remove duplicates(void *arr, size t nelems,
int width, int (*cmp)(void *, wvoid *)) {
int i = 0;
while (i < nelems - 1) {

void *ith = (char *)arr + i * width;
void *ithplusl = (char *)arr + (i+l) * width;
if (cmp(ith,ithplusl) == 0) {

// remove
memmove (ithplusl, (char *)ithplusl+width,
(nelems-i-2)*width);

nelems--;

} else {
i++;

}

}

return nelems;

(b)

// more robust, accounts for possible overflow
int cmp long(void *p, void *q) {
if (*(long *)p > *(long *)g) return 1;
else if (*(long *)p < *(long *)q) return -1;
return 0;

OR

int cmp long(void *p, void *q) {
return *(long *)p - *(long *)q;

©

int newsz = remove duplicates(arr, nelems,
sizeof (long), cmp long);



Problem 2 (Reverse Engineering)
(@)
void mystery(long *arr, size t count) {
if (count > 0) { // line 1
mystery(arr, count / 2); // line 2

printf("%lu\n", arr[count-1]); // line 3

(b)

void *mystery(void *arr, size_ t nelems, int width,
int(*cmp) (void *, void *)) {

void *x = arr; // line 1

for (size_t i = 1; i < nelems; i++) { // line 2
void *y = (char *)arr + i * width; // line 3
if (cmp(x, y) < 0) { // line 4

x =y; // line 5

}

return x; // line 6



Problem 3 (Password Cracking)

(@ Run the program and type a password that is at least 16 characters long. You will
see a message that says, “your password, XXXXXXXXXXXXXXXXXXXX, iS incorrect”,
however it will list your password AND the real password. Run the program again and
type the real password, and you will break in!

(b) The

strncpy(userpwcopy,userpw,16);

line will not null-terminate the copy if it is 16 or more characters long. Therefore, the
userpwcopy variable will not be null-terminated, and the

printf("Your password, %s, is incorrect.\n",userpwcopy);

line will continue printing the realpw variable, in effect concatenating the two
variables. This will print out the real password to the screen, which can be used to run
the program again and gain access.

(c) There are a number of different answers. One would be:

After the strncpy (userpwcopy,userpw, 16); line, add: userpwcopy[15] = O0;

This would fix the issue because it would properly null terminate userpwcopy, so that
when it is printed out, it would not continue printing the adjacent real password.

There are other alternatives — one is to not bother using a copy of the user’s password
and simply to print out the original:

printf("Your password, %s, is incorrect.\n",userpw);

This would fix the issue because the original password is properly null terminated, so
printing it would not print the real password.



Problem 4 (Heap Allocators)

@

int get size(void *curr) {
int mask = -1 << 2;
return (*((int*)curr)) & mask;

(b)

bool is _allocated(void *curr) {
int mask = 0x1;
return (*((int*)curr)) & mask;

©

bool is reallocated(void *curr) ({
int mask = 0x2;
return (*((int*)curr)) & mask;

(d)

headerT *right block(headerT *curr) {
headerT *next = (headerT *)(((char*)curr + get size(curr))
+ sizeof(headerT) + sizeof(int));
if ((char *)next >= (char*)heapStart + heapSize) {
return NULL;
}

return next;



©)
void myfree(void *ptr) {
if (ptr == NULL) return;

headerT *header = (headerT *)ptr - 1;

// past end or before beginning — include offset padding
if ((char *)header >= ((char*)heapStart + heapSize)) return;
if ((char *)header < ((char*)heapStart + 4)) return;

if (!is_allocated(header)) return;
int mask = -1 << 2;
header->payloadsz &= mask; // clear out alloc/realloc bits

// clear footer

int *footer = (int *)((char *)header + get size(header) +
sizeof (headerT));

*footer = header->payloadsz;

// update free list

header->next = free list;

header->prev = NULL;

if (free list != NULL) free list->prev = header;
free list = header;

}
()

void *myrealloc(void *ptr, size t size) {
headerT *header = (headerT *)ptr - 1;

int cursz = get size(header);
if (size <= cursz) return ptr;
if (is_reallocated(header)) size *= 2;

void *block = mymalloc(size);
if (!block) return NULL;
memcpy (block, ptr, cursz);
myfree(ptr);

int mask = 0x2;

// rewind to header, mark realloc
header = (headerT *)block - 1;
header->payloadsz |= mask;

// mark footer realloc and make new header

int *footer = (int *)((char *)header + sizeof (headerT)
+ get size(header));

*footer |= mask;

return block;



Problem 5 (Compiler Optimizations)

(@) Constant folding is one optimization where GCC will embed constant values directly
into the assembly instructions, instead of outputting assembly instructions to calculate
it when the program is run.

Other possibilities: constant sub-expression elimination (calculates repeated expression once in
assembly instructions and saves the result to avoid recomputation), strength reduction (changes
more expensive instructions such as multiply and divide to less expensive operations such as
shifts, mod, etc.), more GCC optimizations besides this!

(b) Optimizations can cause the assembly to not map well to the C code anymore,
because many C lines may be converted to few instructions, variables may be
optimized out, etc.

(c) the static instruction count is the number of assembly instructions included in the
program code (e.g. objdump). the dynamic instruction count is the number of assembly
instructions executed. They could differ for instance with a loop where each of the
individual instructions is executed many times.



