
 1

This exam is based on the final exam given in Fall 2018. The class was taught by Cynthia Lee. This was a
3-hour paper exam.

Problem	1:	Floating	Point	Representation	(10pts)	

A	normalized	IEEE	32-bit	float	is	stored	as	the	following	bit	pattern:		

 N EEEEEEEE SSSSSSSSSSSSSSSSSSSSSSS
	
where	N	is	the	sign	bit	(1	if	negative),	E	is	the	8-bit	exponent	(with	a	bias	of	127),	and	S	is	
the	23-bit	significand,	with	an	implicit	leading	“1”.	
	
Beyoncé	and	Jay-Z	set	up	two	bank	accounts,	one	for	each	of	their	twins,	but	instead	of	using	
IEEE	32-bit	floats	to	represent	the	account	balances,	they	created	a	new	made-up	“minifloat”	
as	a	fittingly	“mini”	way	to	represent	the	account	balances.		A	minifloat	is	structured	the	same	
as	an	IEEE	float,	but	is	8	bits	instead	of	32,	with	1	sign	bit,	4	exponent	bits,	and	3	mantissa	
bits,	and	an	exponent	bias	of	7.	
	
(a) (3pts)	Twin	A’s	account	balance	is	stored	as	the	minifloat	0 1110 010.		What	is	the	

corresponding	(simplified)	decimal	number	that	this	represents?	

	

	

(b) (3pts)	Twin	B’s	account	balance	is	stored	as	the	minifloat	0 1011 001.		What	is	the	
corresponding	(simplified)	decimal	number	that	this	represents?	

	

	

(c) 	(4pts)	After	much	thought,	they	decide	to	merge	the	two	bank	accounts	together.		The	
bank	correctly	performs	minifloat	addition	to	get	the	summed	balance	of	0 1110 011,	
but	this	seems	off	to	Beyoncé	and	Jay-Z.		What	is	the	corresponding	(simplified)	decimal	
number	that	this	represents?		Why	is	this	the	resulting	total	balance?		Why	do	or	don’t	
you	predict	that	this	would	have	been	an	issue	if	they	had	used	regular	IEEE	32-bit	
floats	instead?	

	 	

 2

Problem	2:	Memory	Diagram	(10pts)	
For	this	problem,	you	will	draw	a	memory	diagram	of	the	state	of	memory	as	it	would	exist	
at	the	end	of	the	execution	of	this	code:		

struct wakanda *shuri = malloc(2 * sizeof(struct wakanda));
shuri[0].king = 5;
shuri[0].army = malloc(8);
shuri[1].army = &(shuri[0].king);
int *panther = shuri[0].army;
shuri[1].king = shuri[0].king + 1;

 shuri[0].army = shuri[0].army + 1;
*(shuri[0].army) = 7;

Instructions:	
• Place	each	item	in	the	appropriate	segment	of	memory	(stack,	heap).	
• Please	write	array	index	labels	(0,	1,	2,	...)	next	to	each	box	of	an	array,	in	addition	to	

any	applicable	variable	name	label.	(With	the	array	index	labels,	it	doesn’t	matter	if	
you	draw	your	array	with	increasing	index	going	up,	down,	or	sideways.)	

• Draw	 strings	 as	 arrays	 (series	 of	 boxes),	 with	 individual	 box	 values	 filled	 in	
appropriately	and	array	index	labels	as	described	above.	

• Draw	structs	as	a	series	of	boxes,	one	box	per	struct	field.	(You	may	assume	for	this	
problem	that	no	padding	is	added	to	structs.)	

• Take	care	to	have	pointers	clearly	pointing	to	the	correct	part	of	an	array.	
• Leave	boxes	of	uninitialized	memory	blank.	
• NULL	pointer	is	drawn	as	a	slash	through	the	box,	and	null	character	is	drawn	as	'\0'.	

	

	 Stack Heap

struct wakanda {
 int *army;
 int king;
};

 3

Problem	3:	Pointers	and	Generics	(12pts)	
Recall	 our	 generic	swap	 function	 from	 class	 (reproduced	 below).	 It	 is	 used	 to	make	 two	
values	trade	places	in	memory,	and	is	commonly	used	in	sorting	arrays.	There’s	a	right	way	
to	 call	 this	 swap	 function	 in	 normal	 circumstances,	 but	 we’re	 asking	 you	 to	 use	 it	 a	 bit	
“creatively”	to	achieve	particular	results.	Here	are	some	important	constraints:	

• As	shown	below,	the	third	argument	to swap	is	the	return	value	of	sizeof.	Complete	
it	with	the	name	of	a	standard	type.	

• Do	not	move/change	any	memory	outside	the	boxes	shown	in	the	diagram.	
• Casting	pointers	is	ok.	

void swap(void *a, void *b, size_t sz) {
 char tmp[sz];
 memcpy(tmp, a, sz);
 memcpy(a, b, sz);
 memcpy(b, tmp, sz);
}

(a) (5pts)	Complete	the	mixup1	function	to	create	this	before	and	after	result.		
Before:	 	 												After:		
ptr1 ptr2 ptr1 ptr2

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
'A' 'F' 'A' 'F'
'B' 'G' 'G' 'B'
'C' 'H' 'H' 'C'
'D' 'I' 'I' 'D'
'E' 'J' 'J' 'E'

void mixup1(char *ptr1, char *ptr2) {

 swap(,

 ,

 sizeof());
}

 4

Now	consider	the	following	before	and	after	diagram,	where	ptr1	and	ptr2	are	int *s:	
	
Before:	 	 				 										After:		
ptr1 ptr2 ptr1 ptr2	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
-1 0 -1 0
-1 0 -256 0
-1 0 -1 255
-1 0 -1 0
-1 0 -1 0
	 	 	 	 	 	 	
To	help	you	think	about	how	to	solve	this	one,	lets	first	look	at	the	hexadecimal	versions	of	
the	two	new	numbers	that	appear	in	the	“after.”	
	
	
(b) (1pt)	Write	-256	in	hexadecimal	(32-bit):		
	
	
(c) (1pt)	Write	255	in	hexadecimal	(32-bit):		
	
	
(d) (5pts)	With	those	values	in	mind,	now	complete	the	mixup2	function	to	create	this	before	

and	after	result.	(Note:	you	do	not	need	to	be	concerned	with	“endian-ness”,	or	byte	order	
–	any	endianness	will	be	accepted).	

void mixup2(int *ptr1, int *ptr2) {

 swap(,

 ,

 sizeof());
}
	

 5

Problem	4:	Assembly	(23pts)	
Consider	the	following	code,	generated	by	gcc	with	the	usual	-0g	and	other	settings	for	this	class:	

0000000000400612 <vp>:
 400612: push %rbp
 400613: push %rbx
 400614: sub $0x8,%rsp
 400618: mov %edi,%ebp
 40061a: mov %rsi,%rbx
 40061d: mov %rsi,%rdi
 400620: callq 400490 <strlen@plt>
 400625: lea (%rax,%rax,2),%edi
 400628: cmp $0xffffffef,%ebp
 40062b: jbe 400632 <vp+0x20>
 40062d: jmp 400652 <vp+0x40>
 40062f: shr $0x2,%edi
 400632: cmp $0x6,%edi
 400635: ja 40062f <vp+0x1d>
 400637: cmp $0xff,%ebp
 40063d: jbe 400646 <vp+0x34>
 40063f: callq 4005f3 <pass_final_level>
 400644: jmp 40065c <vp+0x4a>
 400646: mov $0x0,%eax
 40064b: callq 4005d6 <explode_bomb>
 400650: jmp 40065c <vp+0x4a>
 400652: mov $0x0,%eax
 400657: callq 4005d6 <explode_bomb>
 40065c: lea 0x3(%rbx),%rax
 400660: add $0x8,%rsp
 400664: pop %rbx
 400665: pop %rbp
 400666: retq	 	

 6

(a) (17pts)	Fill	in	the	C	code	below	so	that	it	is	consistent	with	the	above	x86-64	code.	Your	C	code	
should	 fit	 the	 blanks	 as	 shown,	 so	 do	 not	 try	 to	 squeeze	 in	 additional	 lines	 or	 otherwise	
circumvent	this	(this	may	mean	slightly	adjusting	the	syntax	or	style	of	your	initial	decoding	
guess	to	an	equivalent	version	that	fits).	All	constants	of	type	signed/unsigned	int	must	be	
written	 in	 decimal.	 Your	 C	 code	 should	 not	 include	 any	 casting.	 The	 signatures	 for	 two	
functions	called	in	the	code	are	provided	for	your	reference.	

void explode_bomb();
void pass_final_level(unsigned int x);

char *vp(unsigned int aaron, char *burr)
{
 // see part (c)
 unsigned int leslie = strlen(burr) * ;

 if () {

 while (leslie >) {

 //see part (c)

 /= ;
 }

 if (aaron >= 256) {

 ;

 } else {

 ;

 }
 } else {
 explode_bomb();
 }

 return ;
}
	 	

 7

(b) (2pts)	 The	 assembly	 code	 includes	 several	 “push”	 and	 “pop”	 instructions.	 What	 kind	 of	
registers	are	being	pushed	(and	popped),	and	why	is	gcc	required	to	push	and	pop	them,	given	
how	those	registers	are	used	in	the	body	of	the	function?		

	

	

	

	

	

	

	

	

(c) 	(2pts)	The	C	code	includes	a	multiply	and	a	divide	(marked	with	comments	“see part (c)”),	
but	there	is	no	multiply	(imul)	or	divide	instruction	in	the	assembly	code.		Which	instructions	
are	used	instead	(name	both),	and	why	would	gcc	generate	the	assembly	code	this	way?	

	

	

(d) 	(2pts)	Is	it	possible	to	provide	a	value	for	aaron	that	would	allow	this	function	to	complete	
without	calling	explode_bomb?	(Check	box	for	one.)					 	⎕	YES										 	 ⎕	NO	

If	yes,	give	such	a	value	for	aaron.	If	no,	explain	the	constraints	that	prevent	it.	

	

 8

Problem	5:	Heap	Allocator	(24pts)	
You	are	writing	code	for	an	allocator	that	uses	a	block	header	and	maintains	an	explicit	free	list.	
Implementation	details	of	this	allocator	include:	

• All	requests	are	rounded	up	to	a	multiple	of	16-bytes	and	all	returned	pointers	are	aligned	
to	16-byte	boundaries.	The	minimum	payload	size	is	16	bytes.	

• The	header	is	16	bytes	as:		
o a	size_t	(8	bytes)	storing	the	payload	size,	expressed	as	a	count	of	8-byte	words	
o an	unsigned	long	(8	bytes),	1	if	block	is	in-use,	0	if	free	

• The	allocator	maintains	an	explicit	free	list	as	a	doubly-linked	list	stored	in	the	payload.	A	
global	variable	points	to	the	payload	of	a	free	block	(or	NULL	if	there	are	no	free	blocks).		

• The	first	8	payload	bytes	of	each	free	block	store	a	“next”	pointer	to	the	payload	of	another	
free	block.	The	last	free	block	on	the	list	stores	NULL	as	its	“next.”	

• The	next	8	payload	bytes	of	each	free	block	store	a	“previous”	pointer	to	the	payload	of	
another	free	block.	The	first	free	block	on	the	list	stores	NULL	as	its	“previous.”	
	

Here	is	an	example	heap	after	a	few	requests	have	been	serviced	(box	sizes	not	to	scale):	
0x20 0x28 0x30 0x50 0x58 0x60 0x68 0x70 0x78 0x80 0x90 0x98 0x100 0x108 	 	
nwords
4

used
1

 nwords
2

used
0

0x0 0x100 nwords
2

used
1

 nwords
6

used
0

0x60 0x0 	 	

	

This	segment	starts	at	address	0x20	and	ends	at	0x138	(0x137	is	the	last	byte	of	the	last	block).	
Two	blocks	are	in-use,	two	are	free.	The	in-use	payloads	are	shown	shaded	in	gray.	The	free_list	
points	to	the	payload	at	0x100,	and	the	payload	at	0x100 stores	a	“next”	pointer	to	the	payload	at	
0x60,	and	the	payload	at	0x60 stores	a	“next”	pointer	of	NULL.	The	“previous”	pointers	of	the	two	
free	blocks	are	also	set	accordingly.	

Below	are	the	allocator’s	global	variables,	constants,	and	type	definitions	(you	may	assume	that	
the	structs’	memory	layouts	are	as	shown	and	described	above).	

struct Header { size_t nwords; unsigned long used; };
struct Node { struct Node *next; struct Node *prev; };
#define HDRSIZE sizeof(struct Header)
#define NODSIZE sizeof(struct Node)
static void *segment_start; // base address of heap segment
static void *segment_end; // end address of heap segment
static void *free_list; // pointer to payload of first free block
 // (NULL if no free blocks)

 9

(a) (4pts)	Implement	get_neighbor.	Given	a	pointer	to	a	block’s	header,	it	returns	a	pointer	to	
the	header	of	the	neighbor	to	the	right,	i.e.,	at	the	next	higher	address	in	the	heap.	If	hdr	has	
no	right	neighbor	(i.e.,	it	is	the	rightmost	block	in	the	heap	segment),	the	function	returns	NULL.	

struct Header *get_neighbor(struct Header *hdr)
{

}

(b) (2pts)	You	consider	implementing	a	corresponding	get_left_neighbor	(given	a	pointer	to	
a	block’s	header,	it	would	return	a	pointer	to	the	header	of	the	neighbor	to	the	left),	but	soon	
realize	 that	 it	 while	 it	 would	 be	 possible,	 it	 would	 be	much	 slower	 than	 getting	 the	 right	
neighbor.	Briefly	describe	how	is	it	possible	(what	actions	would	the	function	have	to	take),	
and	why	it	would	be	slower	in	terms	of	Big-O	cost.	

 10

(c) (3pts)	As	you	think	about	your	heap	allocator	design,	you	realize	that	in	many	places	in	your	
code,	you	will	have	a	pointer	to	a	block’s	payload,	and	you’ll	need	to	get	a	pointer	to	the	header	
of	the	same	block.	Implement	a	helper	function	to	do	this	conversion.		

struct Header *pay_to_hdr(struct Node *payload)	
{

}

Parts	 (d)-(f)	 concern	 helper	 functions	 that	 you	 plan	 to	 use	 in	 your	 validate_heap	 function.	
Specifically,	you’d	like	to	loop	over	every	block	in	the	entire	heap	and	count	how	many	free	blocks	
you	find,	and	then	compare	that	count	to	the	number	of	free	blocks	you	encounter	while	traversing	
your	explicit	free	list.	In	parts	(d)-(f),	you’ll	write	and	analyze	functions	to	do	these	two	counts.	

(d) (4pts)	Write	a	function	count_free_inorder	that	starts	at	the	leftmost	block	of	the	heap	and	
proceeds	 to	 the	 right	 neighbor,	 then	 its	 right	 neighbor,	 and	 so	 on	 to	 the	 end	 of	 the	 heap,	
counting	how	many	free	blocks	it	encounters.	For	full	credit,	you	should	use	other	functions	in	
this	problem	as	helper	functions	if/when	appropriate.		In	particular,	while	you	won’t	be	writing	
it	yourself,	you	may	assume	there	exists	the	following	already-implemented	function:	

	
	struct Node *hdr_to_pay(struct Header *header);
	

size_t count_free_inorder()
{		
 size_t nfree = 0;

 for (struct Header *curr = ;

 ;

) {

 if (curr->used == 0) // see part (f)
 nfree++;
 }
 return nfree;
}

 11

(e) (3pts)	Now	write	a	function	that	traverses	the	explicit	free	list	and	counts	the	number	of	free	
blocks	it	finds.	Again,	for	full	credit,	you	should	use	other	functions	in	this	problem	as	helper	
functions	if/when	appropriate.	

size_t count_free_list()
{		
 size_t nfree = 0;

 for (struct Node *curr = ;

 ;

) {

 if (. == 0) // check if free - see part (f)
 nfree++;
 }
 return nfree;
}

(f) (2pts)	Your	coworker	looks	at	your	count_free_list	and	count_free_inorder	functions	

above,	and	says	that	only	one	of	them	needs	the	“if”	test	(see	the	line	marked	“see part (f)”	
in	each	function;	note	that	they	both	do	need	the	line	“nfree++;”).	In	other	words,	you	could	
just	cross	out	one	of	the	lines	marked	“see part (f)”	and	the	functionality	would	not	change.		
	
From	which	function	could	you	safely	remove	the	“if”	test?	(Check	box	for	one.)							

⎕	count_free_inorder	
⎕	count_free_list		 	 	

	
Explain	why	that	function	does	NOT	need	the	“if”	test.	
	
	
	
	
	
	

	 	

 12

(g) (2pts)	Your	heap	allocator	does	coalescing,	that	is,	merging	a	pair	of	adjacent	free	blocks	to	
create	one	big	 free	block.	The	merge	 consumes	 the	entire	 right	block,	 including	 its	header,	
adding	it	to	the	left	block’s	payload.	This	involves	a	few	steps,	but	one	of	them	is	to	update	the	
header	 of	 the	 left	 block	 of	 the	 pair	 to	 reflect	 the	 new	 size.	 Write	 a	 helper	 function	
update_header	 that	 takes	a	pointer	 to	 the	header	of	 the	 left	block	of	a	pair	of	 free	blocks	
(assume	you’ve	already	checked	they’re	both	free)	and	updates	its	nwords	field.	Again,	for	full	
credit,	you	should	use	other	functions	in	this	problem	as	helper	functions	if/when	appropriate.	

void update_header(struct Header *left)
{		
 left->nwords +=

 ;
}

(h) (4pts)	 In	 operations	 such	 as	 malloc	 and	 coalesce,	 you	 need	 to	 remove	 a	 block	 from	 the	

free_list	and	repair	the	doubly-linked	list	structure	so	it	reconnects	around	the	removed	
link	node.	Write	a	helper	function	that	performs	this	task.	It	takes	a	pointer	to	the	payload	of	
the	block	to	be	removed	from	the	free_list.	We	have	divided	the	work	into	four	cases.	You	
may	not	need	to	write	code	for	each	case.	If	nothing	needs	to	be	done	for	a	particular	case,	just	
write	a	semicolon	in	the	box	for	that	case.	

void remove_node(struct Node *remove)
{		
 if (remove->prev == NULL) {

 } else {

 }
 if (remove->next == NULL) {

 } else {

 }
}

