CS107, Lecture 5
More C Strings

Reading: K&R (1.6, 5.5, Appendix B3) or Essential
C section 3

This document is copyright (C) Stanford Computer Science, Lisa Yan, Nick Troccoli and Katie Creel, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Lisa Yan, Jerry Cain and others.

CS107 Topic 2

How can a computer represent and manipulate more complex data like text?

Why is answering this question important?

* Shows us how strings are represented in C and other languages (last time)
* Helps us better understand buffer overflows, a common bug (last time)

* Introduces us to pointers, because strings can be pointers (this time)

assign2: implement 2 functions a 1 program using those functions to find the location
of different built-in commands in the filesystem. You’'ll write functions to extract a list
of possible locations and tokenize that list of locations.

Learning Goals

* Understand how to use the built-in string functions for common string tasks
e Learn more about the risks of buffer overflows and how to mitigate them

* Understand how strings are represented as pointers and how that helps us
better understand their behavior

Lecture Plan

* Recap: Strings so far

* Searching in Strings

* Practice: Password Verification

e Buffer Overflows, Security and Valgrind

e Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

Lecture Plan

* Recap: Strings so far

* Searching in Strings

* Practice: Password Verification

e Buffer Overflows, Security and Valgrind

e Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

C strings are arrays of characters ending with a null-terminating character '\0'.

index

va/ue IHI lel Ill lll IOI I,l 1 1 IWI IOI lr‘l lll Idl I!l I\@l

String operations such as strlen use the null-terminating character to find the
end of the string.

Side note: use strlen to get the length of a string. Don’t use sizeof!

Common string.h Functions

Function

Description

strlen(str)

returns the # of chars in a C string (before null-terminating character).

strcmp(strl, str2),
strncmp(strl, str2, n)

compares two strings; returns O if identical, <0 if str1 comes before
str2in alphabet, >0 if strl comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle)

string search: returns a pointer to the start of the first occurrence of
needle in haystacR, or NULL if needle was not found in haystacR.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning.

// Want ju
char chars

strcpy(chars, "racecar");

char *stril
char *str2

st "car

[8];

= chars;

= chars + 4;

chars | 'r’

\Q'

stri ‘ Oxfl

str2

@fo‘

To omit characters at the end, make a new string that is a partial copy of the
original.

// Want just "race”
char strl[8];
strcpy(strl, "racecar");

char str2[5];

strncpy(str2, strl, 4);

str2[4] = "\0';

printf("%s\n", strl); // racecar
printf("%s\n", str2); // race

We can combine pointer arithmetic and copying to make any substrings we’d
like.

// Want just "ace
char strl[8];
strcpy(strl, "racecar");

char str2[4];

strncpy(str2, strl + 1, 3);

str2[3] = "\0@';

printf("%s\n", strl); // racecar
printf("%s\n", str2); // ace

10

String Diamond

Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.

* For example, diamond ("BAILEY") should print: g | g

B
BA
BAL
BAIL
BAILE
BAILEY
AILEY
ILEY
LEY
v B e |
Y | 11

Practice: String Diamond

Lecture Plan

* Recap: Strings so far

* Searching in Strings

* Practice: Password Verification

e Buffer Overflows, Security and and Valgrind

e Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

13

Searching For Letters

strchr returns a pointer to the first occurrence of a character in a string, or
NULL if the character is not in the string.

char bailey[7];
strcpy(bailey, "Bailey");
char *letterl = strchr(bailey, 'i');

printf("%s\n", bailey); // Bailey
printf("%s\n", letterI); // iley

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the /last occurrence.

14

Searching For Strings

strstr returns a pointer to the first occurrence of the second string in the first,
or NULL if it cannot be found.

char bailey[11];
strcpy(bailey, "Bailey Dog");
char *substr = strstr(bailey, "Dog");

printf("%s\n", bailey); // Bailey Dog
printf("%s\n", substr); // Dog

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.

15

strspn returns the length of the initial part of the first string which contains
only characters in the second string.

char bailey[10];
strcpy(bailey, "Bailey Dog");
int spanLength = strspn(bailey, "aBeoi"); // 3

“How many places can we go in the first string before I
encounter a character not in the second string?”

16

strcspn (c = “complement”) returns the length of the initial part of the first
string which contains only characters not in the second string.

char bailey[10];
strcpy(bailey, "Bailey Dog");
int spanLength = strcspn(bailey, "driso"); /] 2

“How many places can we go in the first string before I
encounter a character in the second string?”

17

C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. We can still
operate on the string the same way as with a char[]. (We’ll see why today!).

int doSomething(char *str) {
char secondChar = str[l1];

// can also write this, but it is really a pointer
int doSomething(char str[]) { ...

18

Arrays of Strings

We can make an array of strings to group multiple strings together:

char *stringArray[5]; // space to store 5 char *s

We can also use the following shorthand to initialize a string array:

char *stringArray[] = {
"Hello",

"Fi"’

"Hey there”

s

19

Arrays of Strings

We can access each string using bracket syntax:
printf("%s\n", stringArray[@]); // print out first string

When an array is passed as a parameter in C, C passes a pointer to the first
element of the array. This is what argv is in main! This means we write the
parameter type as:

void myFunction(char **stringArray) {

// equivalent to this, but it is really a double pointer
void myFunction(char *stringArray[]) {

20

Practice: Password Verification

Write a function verifyPassword that accepts a candidate password and
certain password criteria and returns whether the password is valid.

bool verifyPassword(char *password, char *validChars, char
*badSubstrings[], int numBadSubstrings);

password is valid if it contains only letters in validChars, and does not contain
any substrings in badSubstrings.

21

Practice: Password Verification

bool verifyPassword(char *password, char *validChars, char
*badSubstrings[], int numBadSubstrings);

Example:

char *invalidSubstrings[] = { "1234" };

bool validl = verifyPassword("1572", "©123456789",
invalidSubstrings, 1); // true

bool valid2 = verifyPassword("141234", "©123456789",
invalidSubstrings, 1); // false

22

Practice: Password
Verification

Lecture Plan

* Recap: Strings so far

* Searching in Strings

* Practice: Password Verification

e Buffer Overflows, Security and Valgrind

e Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

24

Recall: Buffer Overflows

We must make sure there is enough space in the destination to hold the entire
copy, including the null-terminating character.

char str2[6]; // not enough space!
strcpy(str2, "hello, world!"™); // overwrites other memory!

Writing past memory bounds is called a “buffer overflow”. It can allow for
security vulnerabilities!

25

char stril

[14];

Recall: Buffer Overflows

strcpy(strl, "hello, world!");

char str2
strcpy(str2, strl);

strl

str2

6];

// not enough space - overwrites other memory!

'e' 1 1 o) , "w' o) r 1 "\0'
‘e’ 1 1 0 , 'w' o) r 1 "\o0'

26

Buffer Overflow Impacts

Buffer overflows are not merely functionality bugs; they can cause a range of
unintended behavior:

* Access memory you shouldn’t be able to access

* Modify memory you shouldn’t be able to access

* Change a value that is used later in the program
* Change the program to execute your instructions instead of its own

e And more...

It’s our job as programmers to find and fix buffer overflows and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with my code.

27

Buffer Overflow Impacts

* AOL instant messenger buffer overflow: allowed remote attackers to execute
code: https://www.cvedetails.com/cve/CVE-2002-0362/

* Morris Worm: first internet worm to gain widespread attention; exploited
buffer overflow in Unix command called "finger”:
https://en.wikipedia.org/wiki/Morris worm

28

https://www.cvedetails.com/cve/CVE-2002-0362/
https://en.wikipedia.org/wiki/Morris_worm

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

 Carefully reading documentation
* Thorough testing to uncover issues before release
* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

29

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

e Carefully reading documentation

* Thorough testing to uncover issues before release
* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

30

How can we fix buffer overflows?

MAN page for gets():

“Never use gets(). Because it 1s impossible to tell
without Rnowing the data in advance how many characters
gets() will read, and because gets() will continue to
store characters past the end of the buffer, it 1is
extremely dangerous to use. It has been used to break
computer security. Use fgets() instead.”

31

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

 Carefully reading documentation
* Thorough testing to uncover issues before release

* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

32

How Can We Fix Overflows?

 Valgrind: Your Greatest Ally
* Write your own tests
* Consider writing tests before writing the main program

cs1le7.stanford.edu/testing.html

33

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

 Carefully reading documentation
* Thorough testing to uncover issues before release
* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

34

How Can We Fix Overflows?

Documentation & MAN Pages (Written by Others)

“The strcpy() function copies the string pointed to by src,
including the terminating null byte (°\0’), to the buffer pointed
to by dest. The strings may not overlap, and the destination
string dest must be large enough to receive the copy. Beware of
buffer overruns! (See BUGS.) ..

BUGS

If the destination string of a strcpy() is not large enough, then
anything might happen. Overflowing fixed-length string buffers is
a favorite cracker technique for taking complete control of the
machine. Any time a program reads or copies data into a buffer,
the program first needs to check that there’s enough space. This
may be unnecessary if you can show that overflow is impossible,
but be careful: programs can get changed over time, in ways that

may make the impossible possible.”
35

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

 Carefully reading documentation

* Thorough testing to uncover issues before release

* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

36

Memory Safe Systems Programming

ldea 5: Choose your Tools & Languages Carefully

Existing code bases or requirements for a project may dictate what tools you
use. Knowing Cis crucial — it is and will remain widely used.

When you you are choosing tools for systems programming, consider languages
that can help guard against programmer error.

* Rust (Mozilla)
* Go (Google)
* Project Verona (Microsoft)

37

Association for Computing Machinery
ACM) Code of Ethics

ACM Code of Ethics and Professional Conduct

ACM Code of Ethics and Professional Conduct

Preamble

Computing professionals' actions change the world. To act responsibly, they should reflect upon the wider
impacts of their work, consistently supporting the public good. The ACM Code of Ethics and Professional
Conduct ("the Code") expresses the conscience of the profession.

The Code is designhed to inspire and guide the ethical conduct of all computing professionals, including
current and aspiring practitioners, instructors, students, influencers, and anyone who uses computing
technology in an impactful way. Additionally, the Code serves as a basis for remediation when violations
occur. The Code includes principles formulated as statements of responsibility, based on the
understanding that the public good is always the primary consideration. Each principle is supplemented
by guidelines, which provide explanations to assist computing professionals in understanding and

On This Page

Preamble
1. GENERAL ET

1.1 Contribute
well-being, ack
are stakeholder

1.2 Avoid harm
1.3 Be honest ¢

1.4 Be fair and
discriminate.

38

ACM Code of Ethics on Security

2.9 Design and implement systems that are robustly and usably secure.

Breaches of computer security cause harm. Robust security should be a primary consideration when
designing and implementing systems. Computing professionals should perform due diligence to ensure
the system functions as intended, and take appropriate action to secure resources against accidental and
intentional misuse, modification, and denial of service. As threats can arise and change after a system is
deployed, computing professionals should integrate mitigation techniques and policies, such as
monitoring, patching, and vulnerability reporting. Computing professionals should also take steps to
ensure parties affected by data breaches are notified in a timely and clear manner, providing appropriate
guidance and remediation.

To ensure the system achieves its intended purpose, security features should be designed to be as
intuitive and easy to use as possible. Computing professionals should discourage security precautions
that are too confusing, are situationally inappropriate, or otherwise inhibit legitimate use.

In cases where misuse or harm are predictable or unavoidable, the best option may be to not implement
the system.

39

How can we fix buffer overflows?

There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:

e Constant vigilance while programming (checking arrays and where they are
modified)

 Carefully reading documentation
* Thorough testing to uncover issues before release
* Thorough documentation to document assumptions in your code

* (Where possible) use of tools that reduce the possibility for buffer overflows

40

Buffer Overflows

* We must always ensure that memory operations we perform don’t improperly
read or write memory.

* E.g. don’t copy a string into a space that is too small!
* E.g. don’t ask for the string length of an uninitialized string!

* The Valgrind tool may be able to help track down memory-related issues.
 See cs107.stanford.edu/resources/valgrind
* We'll talk about Valgrind more when we talk about dynamically-allocated memory.

41

Demo: Memory Errors

Lecture Plan

* Recap: Strings so far

* Searching in Strings

* Practice: Password Verification

e Buffer Overflows, Security and Valgrind

 Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

43

* A pointer is a variable that stores a memory address.

* Because there is no pass-by-reference in C like in C++, pointers let us pass
around the address of one instance of memory, instead of making many
copies.

* One (8 byte) pointer can refer to any size memory location!

* Pointers are also essential for allocating memory on the heap, which we will
cover later.

* Pointers also let us refer to memory generically, which we will cover later.

44

* Memory is a big array of bytes.

* Each byte has a unique numeric index that is
commonly written in hexadecimal.

* A pointer stores one of these memory addresses.

Address Value
ox105| "\O’
oxle4| '€’
oxie3| '1°
ox102| P’
ox101| P’
ox100| '@’

45

* Memory is a big array of bytes.

* Each byte has a unique numeric index that is
commonly written in hexadecimal.

* A pointer stores one of these memory addresses.

Address Value
261 "\@’
260| '€
259| '1°
258 P’
257 P’
256 @’

46

Looking Back at C++

How would we write a program with a function that takes in an 1nt and
modifies it? We might use pass by reference.

void myFunc(int& num) {
num = 3;
}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 3!

47

Looking Ahead to C

» All parameters in C are “pass by value.” For efficiency purposes, arrays (and
strings, by extension) passed in as parameters are converted to pointers.

* This means whenever we pass something as a parameter, we pass a copy.

* If we want to modify a parameter value in the function we call and have the

C
t
t

nanges persist afterwards, we can pass the location of the value instead of
ne value itself. This way we make a copy of the address instead of a copy of

ne value.

48

int x = 2;

// Make a pointer that stores the address of x.
// (& means "address of")
int *xPtr = &Xx;

// Dereference the pointer to go to that address.

// (* means "dereference")
printf("%d", *xPtr); // prints 2

49

Recap

* Recap: Strings so far Lecture 5 takeaway: C

* Searching in Strings strings are pointers and

* Practice: Password Verification arrays. C strings are error-
* Buffer Overflows, Security and Valgrind prone, and issues like buffer
* Pointers overflows can arise!

* Strings in Memory

cp -r /afs/ir/class/cs107/lecture-code/lect5 . 50

Extra Practice

2. Code study: strncpy

STRCPY(3) Linux Programmer's Manual STRCPY(3)
DESCRIPTION FYR o 1o 1 g P 1 ' '
The strncpy() function is similar, except that at most n bytes of src are buf M 0 n d d y \@

copied. Warning: If there is no null byte among the first n bytes of src,
the string placed in dest will not be null-terminated.

If the length of src is less than n, strncpy() writes additional null
bytes to dest to ensure that a total of n bytes are written.

str\ IFI lr‘l lil I\@I

A simple implementation of strncpy() might be:

1 char *strncpy(char *dest, const char *src, size t n) {
size t 1i;
for (1 =0; 1 < n & & src[i] = "\@'; i++)
dest[i] = src[i];
for (3 1 < n; i++)
dest[i] = "\@';
7 return dest; P

8) (&9

What happens if we call strncpy(buf, str, 5);? 5

(o) WV, I S VY

2. Code study: strncpy

STRCPY(3) Linux Programmer's Manual STRCPY(3)
DESCRIPTION FYR o 1o 1 g P 1 ' '
The strncpy() function is similar, except that at most n bytes of src are buf M 0 n d d y \@

copied. Warning: If there is no null byte among the first n bytes of src,
the string placed in dest will not be null-terminated.

If the length of src is less than n, strncpy() writes additional null
bytes to dest to ensure that a total of n bytes are written.

str\ IFI lr‘l lil I\@I

A simple implementation of strncpy() might be:

1 char *strncpy(char *dest, const char *src, size t n) {
size t 1i;

3 for (1 =0; 1 < n & src[i] != "\0'; i++) dest

4 dest[i] = src[i]; src

5 for (; 1 < n; i++)

6 dest[i] = "\@'; n 5
7 return dest;

8 } .

What happens if we call strncpy(buf, str, 5);? 53

