
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

1

CS107, Lecture 10
Introduction to Assembly

Reading: B&O 3.1-3.4

What is Assembly Code?

• Computers execute "machine code," which is a
sequence of bytes that encode low-level operations for
manipulating data, managing memory, read and write
from storage, and communicate with networks.

• The "assembly code" for a computer is a textual
representation of the machine code giving the
individual instructions to the underlying machine.

What is Assembly Code?
•
•
gcc generates assembly code from C code
Assembly is raw — there is no type checking, and the
instructions are simple. It is unique to the type of
processor (e.g., the assembly for your computer cannot
run on your phone)
Humans can write assembly (and, in fact, in the early days
of computing they had to write assembly), but it is more
productive to be able to read and understand what the
compiler produces, than to write it by hand.
gcc is almost always going to produce better optimized
code than a human could, and understanding what the
compiler produces is important.

•

•

x86 Assembly

• The Intel-based computers we use are direct descendants of
Intel's 16-bit, 1978 processor with the name 8086.

• Intel has taken a strict backwards-compatibility approach to new
processors, and their 32- and 64-bit processors have built upon
the original 8086 Assembly code.

• These days, when we learn x86 assembly code, we have to keep
this history in mind. Naming of "registers," for example, has
historical roots, so bear with it.

Machine-Level Code

• Before we look at some assembly code, let's talk about
some things that have been hidden from us when writing
C code.
Machine code is based on the "instruction set
architecture" (ISA), which defines the behavior and layout
of the system. Behavior is defined as if instructions are
run one after the other, and memory appears as a very
large byte array.

•

Machine-Level Code
• New things that have been hidden:

• The program counter (PC), called "%rip" indicates the address of the next
instruction ("r"egister "i"nstruction "p"ointer". We cannot modify this directly.
The "register file" contains 16 named locations that store 64-bit values.
Registers are the fastest memory on your computer. They are not in main
memory, and do not have addresses. You cannot pass a pointer to a
register, but a pointer may hold a register as its value.

•

• Registers can hold addresses, or integer data. Some registers are used to
keep track of your program's state, and others hold temporary data.
Registers are used for arithmetic, local variables, and return values for
functions.

•

• The condition code registers hold status information about the most recently
executed arithmetic or logical instruction. These are used to control program
flow — e.g., if the result of an addition is negative, exit a loop.
There are vector registers, which hold integer or floating point values.•

Machine-Level Code
• Unlike C, there is no model of different data types, and memory is simply a large,

byte-addressable array.

• There is no distinction between signed and unsigned integers, between different
types of pointers, or even between pointers and integers.

• A single machine instruction performs only a very elementary operation. For
example:
• there is an instruction to add two numbers in registers. That's all the instruction

does.
there is an instruction that transfers data between a register and memory.
there is an instruction that conditionally branches to a new instruction address.

•
•

• Often, one C statement generates multiple assembly code instructions.

Learning Goals

8

• Learn what assembly language is and why it is important
• Become familiar with the format of human-readable assembly and x86
• Learn the mov instruction and how data moves around at the assembly level

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction
• Live Session

7
11
24
35
57

cp -r /afs/ir/class/cs107/lecture-code/lect10 .
9

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction

cp -r /afs/ir/class/cs107/lecture-code/lect10 .
10

10
 13
 24
 35

Bits all the way down

11

Data representation so far
• Integer (unsigned int, 2’s complement signed int)
• char (ASCII)
• Address (unsigned long)
• Aggregates (arrays, structs)

The code itself is binary too!
• Instructions (machine encoding)

GCC

12

• GCC is the compiler that converts your human-readable code into machine-
readable instructions.
• C, and other languages, are high-level abstractions we use to write code

efficiently. But computers don’t really understand things like data structures,
variable types, etc. Compilers are the translator!
• Pure machine code is 1s and 0s – everything is bits, even your programs! But

we can read it in a human-readable form called assembly. (Engineers used to
write code in assembly before C).
• There may be multiple assembly instructions needed to encode a single C

instruction.
• We’re going to go behind the curtain to see what the assembly code for our

programs looks like.

Lecture Plan

13

• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction

cp -r /afs/ir/class/cs107/lecture-code/lect10 .

10
 13
 24
 35

Demo: Looking at an
Executable (objdump -d)

14

Our First Assembly

15

int sum = 0;
for (int i = 0; i < nelems; i++) {

int sum_array(int arr[], int nelems) {

sum += arr[i];
}
return sum;

}

What does this look like in assembly?

13

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b:
401140:

ba
39

00
f0

00 00 00 mov
cmp

$0x0,%edx
%esi,%eax

401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a:
40114d:

83
eb

c0
f1

01 add
jmp

$0x1,%eax
401140 <sum_array+0xa>

40114f: 89 d0 mov %edx,%eax
401151: c3 retq

make
objdump -d sum

Our First Assembly

17

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140:
401142:

39
7d

f0
0b

cmp
jge

%esi,%eax
40114f <sum_array+0x19>

401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx

p
e

%esi,%eax
40114f <sum_array+0x19>

vslq %eax,%rcx
d

401140: 39 f0 cm
401142: 7d 0b jg
401144: 48 63 c8 mo
401147: 03 14 8f ad (%rdi,%rcx,4),%edx

$0x1,%eax
401140 <sum_array+0xa>
%edx,%eax

40114a:
40114d:
40114f:
401151:

83 c0 01
eb f1
89 d0
c3

add
jmp
mov
retq

This is the name of the function (same
as C) and the memory address where
the code for this function starts.

18

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx

_array+0x19>

4),%edx

f0 cmp %esi,%eax
0b jge 40114f <sum
63 c8 movslq %eax,%rcx
14 8f add (%rdi,%rcx,
c0 01 add $0x1,%eax

401140 <sum_array+0xa>
%edx,%eax

401140: 39
401142: 7d
401144: 48
401147: 03
40114a: 83
40114d: eb f1
40114f: 89 d0
401151: c3

jmp
mov
retq

These are the memory addresses where
each of the instructions live. Sequential
instructions are sequential in memory.

19

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx

cmp
jge

401140: 39 f0
401142: 7d 0b
401144: 48 63 c8
401147: 03 14 8f
40114a: 83 c0 01

%esi,%eax
40114f <sum_array+0x19>

movslq %eax,%rcx
(%rdi,%rcx,4),%edx
$0x1,%eax
401140 <sum_array+0xa>
%edx,%eax

40114d: eb f1
40114f: 89 d0
401151: c3

add
add
jmp
mov
retq

This is the assembly code:
“human-readable” versions of
each machine code instruction.

20

Our First Assembly
0000000000401136 <sum_array>:

j

ov $0x0,%edx
mp %esi,%eax
ge 40114f <sum_array+0x19>
ovslq %eax,%rcx
dd (%rdi,%rcx,4),%edx
dd $0x1,%eax
mp 401140 <sum_array+0xa>

w

 ions may
40114a:
40114d:

83
eb

c0 01
f1

abe different byte lengths.
j

40114f:
401151:

89
c3

d0 mov
retq

%edx,%eax

21

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mThis is the machine code:
401140:
401142:

39
7d

f0
0b

chexadecimal instructions,
401144: 48 63 c8 mrepresenting binary as read
401147: 03 14 8f acomputer. Different instruct

by the

Our First Assembly

22

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140:
401142:

39
7d

f0
0b

cmp
jge

%esi,%eax
40114f <sum_array+0x19>

401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140:
401142:

39
7d

f0
0b

cmp
jge

%esi,%eax
40114f <sum_array+0x19>

401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

Each instruction has an
operation name (“opcode”).

23

Our First Assembly
0000000000401136 <sum_array>:

401136:
40113b:
401140:
401142:
401144:
401147:
40114a:
40114d:
40114f:
401151:

b8 00 00 00 00
ba 00 00 00 00
39 f0
7d 0b
48 63 c8
03 14 8f
83 c0 01
eb f1
89 d0
c3

mov
mov
cmp
jge

$0x0,%eax
$0x0,%edx
%esi,%eax
40114f <sum_array+0x19>

movslq %eax,%rcx
add
add
jmp

(%rdi,%rcx,4),%edx
$0x1,%eax
401140 <sum_array+0xa>

mov %edx,%eax
retqEach instruction can also have

arguments (“operands”).

24

Our First Assembly
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140:
401142:

39
7d

f0
0b

cmp
jge

%esi,%eax
40114f <sum_array+0x19>

401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

$[number] means a constant value,
or “immediate” (e.g. 1 here).

25

Our First Assembly
0000000000401136 <sum_array>:

401136:
40113b:
401140:
401142:
401144:
401147:
40114a:
40114d:
40114f:
401151:

b8 00 00 00 00
ba 00 00 00 00
39 f0
7d 0b
48 63 c8
03 14 8f
83 c0 01
eb f1
89 d0
c3

mov
mov
cmp
jge

$0x0,%eax
$0x0,%edx
%esi,%eax
40114f <sum_array+0x19>

movslq %eax,%rcx
(%rdi,%rcx,4),%edx
$0x1,%eax
401140 <sum_array+0xa>
%edx,%eax

add
add
jmp
mov
retq

%[name] means a register, a storage
location on the CPU (e.g. eax here).

26

Lecture Plan

27

• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov instruction

cp -r /afs/ir/class/cs107/lecture-code/lect10 .

10
 13
 27
 35

Assembly Abstraction

28

• C abstracts away the low-level details of machine code. It lets us work using
variables, variable types, and other higher-level abstractions.
• C and other languages let us write code that works on most machines.
• Assembly code is just bytes! No variable types, no type checking, etc.
• Assembly/machine code is processor-specific.
• What is the level of abstraction for assembly code?

Registers

%rax

29

Registers

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

30

Registers

What is a register?

A register is a fast read/write memory
slot right on the CPU that can hold

variable values.
Registers are not located in memory.

31

Registers

32

• A register is a 64-bit space inside the processor.
• There are 16 registers available, each with a unique name.
• Registers are like “scratch paper” for the processor. Data being calculated or

manipulated is moved to registers first. Operations are performed on
registers.
• Registers also hold parameters and return values for functions.
• Registers are extremely fast memory!
• Processor instructions consist mostly of moving data into/out of registers and

performing arithmetic on them. This is the level of logic your program must be
in to execute!

Machine-Level Code

33

Assembly instructions manipulate these registers. For example:
• One instruction adds two numbers in registers
• One instruction transfers data from a register to memory
• One instruction transfers data from memory to a register

GCC And Assembly
• GCC compiles your program – it lays out memory on the stack and heap and

generates assembly instructions to access and do calculations on those
memory locations.
• Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

34

int sum = x + y; 1) Copy x into register 1
2) Copy y into register 2
3) Add register 2 to register 1
4) Write register 1 to memory for sum

Assembly
• We are going to learn the x86-64 instruction set architecture. This instruction

set is used by Intel and AMD processors.
• There are many other instruction sets: ARM, MIPS, etc.

35

Instruction set architecture (ISA)
A contract between program/compiler and hardware:
• Defines operations that the processor (CPU) can execute
• Data read/write/transfer operations
• Control mechanisms

Intel originally designed their instruction set back in 1978.
• Legacy support is a huge issue for x86-64
• Originally 16-bit processor, then 32 bit, now 64 bit.

These design choices dictated the register sizes
(and even register/instruction names).

Application program

Compiler OS
ISA

CPU design

Circuit design

Chip layout

36

Lecture Plan

37

• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov Instruction
• Live Session

7
11
24
35
57

cp -r /afs/ir/class/cs107/lecture-code/lect10 .

mov

38

The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

$0x104

%rbx
0x6005c0Direct address

Operand Forms: Immediate

mov $0x104,

Copy the value
0x104 into some

destination.

39

Operand Forms: Registers

mov %rbx,

mov ,%rbx

Copy the value in
register %rbx into
some destination.

Copy the value
from some source
into register %rbx.

40

39

Operand Forms: Absolute Addresses

mov 0x104,

mov

Copy the value at
address 0x104 into
some destination.

,0x104
Copy the value

from some source
into the memory at

address 0x104.

40

Practice #1: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 5 is stored at address 0x42, and the value 8
is stored in %rbx.

1. mov $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55

41

Operand Forms: Indirect

mov (%rbx),

mov ,(%rbx)

Copy the value at the
address stored in register

%rbx into some destination.

Copy the value from some source
into the memory at the address

stored in register %rbx.

Operand Forms: Base + Displacement

mov 0x10(%rax),

mov ,0x10(%rax)

Copy the value at the
address (0x10 plus what is
stored in register %rax) into

some destination.

Copy the value from some source
into the memory at the address (0x10
plus what is stored in register %rax).42

43

Operand Forms: Indexed

mov

mov ,(%rax,%rdx)

Copy the value at the address which is
(the sum of the values in registers %rax

and %rdx) into some destination.

(%rax,%rdx),

Copy the value from some source into the
memory at the address which is (the sum of

the values in registers %rax and %rdx).

44

Operand Forms: Indexed

mov

mov ,0x10(%rax,%rdx)

Copy the value at the address which is (the
sum of 0x10 plus the values in registers
%rax and %rdx) into some destination.

0x10(%rax,%rdx),

Copy the value from some source into the
memory at the address which is (the sum of 0x10

plus the values in registers %rax and %rdx).

Practice #2: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x11 is stored at address 0x10C, 0xAB is
stored at address 0x104, 0x100 is stored in register %rax and 0x3 is stored in
%rdx.

1. mov
2. mov
3. mov

$0x42,(%rax)
4(%rax),%rcx
9(%rax,%rdx),%rcx

Imm(rb, ri) is equivalent to address Imm + R[rb] + R[ri]

Displacement: positive or
negative constant (if missing, = 0)

Base: register
(if missing, = 0)

Index: register
(if missing, = 0) 45

46

Operand Forms: Scaled Indexed

mov (,%rdx,4),

mov ,(,%rdx,4)

Copy the value at the address which
is (4 times the value in register

%rdx) into some destination.

Copy the value from some source into the
memory at the address which is (4 times

the value in register %rdx).

The scaling factor
(e.g. 4 here) must
be hardcoded to
be either 1, 2, 4
or 8.

47

Operand Forms: Scaled Indexed

mov 0x4(,%rdx,4),

mov ,0x4(,%rdx,4)

Copy the value at the address which is
(4 times the value in register %rdx, plus

0x4), into some destination.

Copy the value from some source into the
memory at the address which is (4 times

the value in register %rdx, plus 0x4).

48

Operand Forms: Scaled Indexed

mov (%rax,%rdx,2),

mov ,(%rax,%rdx,2)

Copy the value at the address which is (the
value in register %rax plus 2 times the value in

register %rdx) into some destination.

Copy the value from some source into the memory at
the address which is (the value in register %rax

plus 2 times the value in register %rdx).

49

Operand Forms: Scaled Indexed

mov 0x4(%rax,%rdx,2),

mov ,0x4(%rax,%rdx,2)

Copy the value at the address which is (0x4 plus the
value in register %rax plus 2 times the value in

register %rdx) into some destination.

Copy the value from some source into the memory at
the address which is (0x4 plus the value in register

%rax plus 2 times the value in register %rdx).

Most General Operand Form

52

Imm(rb,ri,s)

is equivalent to…

Imm + R[rb] + R[ri]*s

Most General Operand Form

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement:
pos/neg constant
(if missing, = 0)

Index: register
(if missing, = 0)

Scale must be
1,2,4, or 8
(if missing, = 1)

Base: register (if
missing, = 0)

53

52

Operand Forms
Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟! R[𝑟!] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟!) M[R	𝑟!] Indirect

Memory 𝐼𝑚𝑚(𝑟") M[𝐼𝑚𝑚	+	 R	 𝑟"] Base + displacement

Memory (𝑟",	𝑟#) M[R	𝑟"	 +	R	𝑟#] Indexed

Memory 𝐼𝑚𝑚(𝑟",	𝑟#) M[𝐼𝑚𝑚	+	R	𝑟"	 +	R	𝑟#] Indexed

Memory (,	𝑟#	,	𝑠) M[R	𝑟#	 . 	𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(,	𝑟#	,	𝑠) M[𝐼𝑚𝑚	+	R	𝑟#	 . 	𝑠] Scaled indexed

Memory (𝑟",	𝑟#	,	𝑠) M[R	𝑟"	 +	R	𝑟#	 . 	𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟",	𝑟#	,	𝑠) M[𝐼𝑚𝑚	+	R	𝑟"	 +	 R	𝑟# . 	𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

Practice #3: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x1 is stored in register %rcx, the value
0x100 is stored in register %rax, the value 0x3 is stored in register %rdx, and
value 0x11 is stored at address 0x10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4),%rbx
Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

55

Displacement Base Index Scale
(1,2,4,8)

Goals of indirect addressing: C

56

Why are there so many forms of
indirect addressing?

We see these indirect addressing
paradigms in C as well!

55

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

00000000004005b6 <sum_array>:
4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add

cmp
jl

$0x1,%edx
%esi,%edx
4005c2 <sum_array+0xc>

4005cb: 39 f2
4005cd: 7c f3
4005cf: f3 c3 repz retq

We’re 1/4th of the way to understanding assembly!
What looks understandable right now?
Some notes:
• Registers store addresses and values
• mov src, dst copies value into dst
• sizeof(int) is 4
• Instructions executed sequentially

We’ll come back to this
example in future lectures!

Central Processing Units (CPUs)

Intel 8086, 16-bit
microprocessor
($86.65, 1978)

58

Raspberry Pi BCM2836
32-bit ARM microprocessor
($35 for everything, 2015)

Intel Core i9-9900K 64-bit
8-core multi-core processor
($449, 2018)

Assembly code in movies

Trinity saving the world by
hacking into the power grid
using Nmap Network
Scanning
The Matrix Reloaded, 2003

59

61

Keep a resource guide handy
• https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf
• B&O book:

• Canvas -> Files
-> Bryant_OHallaron_ch3.1-3.8.pdf

• It’s like study abroad:
• You took LANG 1A
• Your tools give too much/too little information

(a book reference, a rudimentary translator)
• No one expects you to speak the language

fluently…
• …But the more you internalize,

the better you can use tools to read the language
Chapter 3, Figures 3.2-3.3 (p. 180-181)

Why are we reading assembly?

• We will not be writing assembly! (that’s the compiler’s job)
• Rather, we want to translate the assembly back into our C code.
• Knowing how our C code is converted into machine instructions gives us

insight into how to write more efficient, cleaner code.

Programmer-
generated

Main goal: Information retrieval

C codeidea
Assembly

code Machine code

gcc (compiler+assembler)
generated

61

TADA!

And that’s it for today!

Extended warmup: Information Synthesis
Spend a few minutes thinking about the main paradigms of the mov instruction.
• What might be the equivalent C-like operation?
• Examples (note %r registers are 64-bit):
1. mov
2. mov
3. mov
4. mov

$0x0,%rdx
%rdx,%rcx
$0x42,(%rdi)
(%rax,%rcx,8),%rax

63

Extended warmup: Information Synthesis
Spend a few minutes thinking about the main paradigms of the mov instruction.
• What might be the equivalent C-like operation?
• Examples (note %r registers are 64-bit):

$0x0,%rdx -> maybe long x = 0
%rdx,%rcx -> maybe long x = y;
$0x42,(%rdi) -> maybe *ptr = 0x42;

1. mov
2. mov
3. mov
4. mov (%rax,%rcx,8),%rax -> maybe long x = arr[i];

Indirect addressing
is like pointer
arithmetic/deref!

64

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x = ...
int *ptr = malloc(…);
...

??? = _???_;

mov %ecx,(%rax)

1. Extra Practice

<val of x>

%ecx

(Pedantic: You should sub in
<x> and <ptr> with actual
values, like 4 and 0x7fff80)

<val of ptr>

65
%rax

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x = ...
int *ptr = malloc(…);
...

??? = _???_;

mov %ecx,(%rax)

1. Extra Practice

<val of x> <val of ptr>

*ptr = x;

%ecx %rax
67

Fill in the blank to complete the C code that

long arr[5];
...
long num = ??? ;

1. generates this assembly
2. results in this register layout

mov (%rdi, %rcx, 8),%rax

2. Extra Practice

3
%rcx

<val of num>

%rax

<val of arr>

%rdi
67

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long arr[5];
...
long num = ??? ;

mov (%rdi, %rcx, 8),%rax

2. Extra Practice

long num = arr[3];
long num = *(arr + 3);
long num = *(arr + y);

(assume long y = 3;
declared earlier)

3
%rcx

<val of num>

%rax

<val of arr>

%rdi
68

Fill in the blank to complete the C code that

char str[5];
...

??? = 'c';

1. generates this assembly
2. has this register layout

mov $0x63,(%rcx,%rdx,1)

3. Extra Practice

2
%rdx

<val of str>

%rcx
69

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char str[5];
...

??? = 'c';

mov $0x63,(%rcx,%rdx,1)

3. Extra Practice

str[2] = 'c';
*(str + 2) = 'c';

2
%rdx

<val of str>

%rcx
70

Coming Up Soon To A Slide Near You
• The below code is the objdump of a C function, foo.

• foo keeps its 1st and 2nd parameters are in registers %rdi and %rsi, respectively.

0x4005b6 <foo> mov (%rdi),%rax
0x4005b9 <foo+3> mov (%rsi),%rdx
0x4005bc <foo+6> mov %rdx,(%rdi)
0x4005bf <foo+9> mov %rax,(%rsi)

0x7fffe868

%rdi

0x7fffe870

%rsi

42

1000
0x7fffe870

0x7fffe868
8 bytes

%rax %rdx

1. What does this function do?
2. What C code could have

generated this assembly?
(Hints: make up C variable names as
needed, assume all regs 64-bit)

71

Coming Up Soon To A Slide Near You
• The below code is the objdump of a C function, foo.

• foo keeps its 1st and 2nd parameters are in registers %rdi and %rsi, respectively.

0x4005b6 <foo> mov (%rdi),%rax
0x4005b9 <foo+3> mov (%rsi),%rdx
0x4005bc <foo+6> mov %rdx,(%rdi)
0x4005bf <foo+9> mov %rax,(%rsi)

0x7fffe868

%rdi

0x7fffe870

%rsi

42

1000
0x7fffe870

0x7fffe868
8 bytes

%rax %rdx

72

