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CS107, Lecture 11
Assembly: Arithmetic and Logic

Reading: B&O 3.5-3.6
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CS107 Topic 5: How does a 
computer interpret and 
execute C programs?
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CS107 Topic 5
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better 

code
• We can learn how to reverse engineer and exploit programs at the assembly 

level 

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a 
program without seeing its code, and de-anonymize users given a data leak.
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Learning Assembly

Moving data 
around

Arithmetic and 
logical 

operations
Control flow Function calls

Lecture 10 This Lecture Lecture 12 Lecture 13

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!
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Helpful Assembly Resources
• Course textbook (reminder: see relevant readings for each lecture on the 

Calendar page, http://cs107.stanford.edu/calendar.html)
• CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-

64-reference.pdf
• CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html

http://cs107.stanford.edu/calendar.html
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/guide/x86-64.html
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Learning Goals
• Learn how to perform arithmetic and logical operations in assembly
• Begin to learn how to read assembly and understand the C code that 

generated it
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Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!
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Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!
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mov
The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)
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Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) What’s in %rax

4(%rax) What’s in %rax, plus 4

(%rax, %rdx) Sum of what’s in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) What’s in %rcx, times 4 (multiplier can be 1, 
2, 4, 8)

(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx

8(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx, 
plus 8
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Operand Forms
Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟! R[𝑟!] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟!) M[R 𝑟! ] Indirect

Memory 𝐼𝑚𝑚(𝑟") M[𝐼𝑚𝑚 + R 𝑟" ] Base + displacement

Memory (𝑟" , 𝑟#) M[R 𝑟" + R 𝑟# ] Indexed

Memory 𝐼𝑚𝑚(𝑟" , 𝑟#) M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟# ] Indexed

Memory (, 𝑟# , 𝑠) M[R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(, 𝑟# , 𝑠) M[𝐼𝑚𝑚 + R 𝑟# . 𝑠] Scaled indexed

Memory (𝑟" , 𝑟# , 𝑠) M[R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟" , 𝑟# , 𝑠) M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values, 
or values from memory.   The scaling factor s must be either. 1, 2, 4, or 8.”
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Most General Operand Form

Imm(rb, ri, s) is equivalent to 
address Imm + R[rb] + R[ri]*s

Displacement: 
pos/neg constant 
(if missing, = 0)

Index: register 
(if missing, = 0)

Scale must be 
1,2,4, or 8
(if missing, = 1)

Base: register (if 
missing, = 0)
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Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!
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Data Sizes
Data sizes in assembly have slightly different terminology to get used to:
• A byte is 1 byte.
• A word is 2 bytes.
• A double word is 4 bytes.
• A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:
• b means byte
• w means word
• l means double word
• q means quad word
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Register Sizes
63Bit: 071531

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rsi %esi %si %sil

%rdi %edi %di %dil



16

Register Sizes

%rbp %ebp %bp %bpl

63Bit: 071531

%rsp %esp %sp %spl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b
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Register Sizes

%r12 %r12d %r12w %r12b

63Bit: 071531

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b
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Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!
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mov Variants
• mov can take an optional suffix (b,w,l,q) that specifies the size of data to move: 
movb, movw, movl, movq

• mov only updates the specific register bytes or memory locations indicated.
• Exception: movl writing to a register will also set high order 4 bytes to 0.
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Practice: mov And Data Sizes
For each of the following mov instructions, determine the appropriate suffix 
based on the operands (e.g. movb, movw, movl or movq).

1. mov__ %eax, (%rsp)
2. mov__ (%rax), %dx
3. mov__ $0xff, %bl
4. mov__ (%rsp,%rdx,4),%dl
5. mov__ (%rdx), %rax
6. mov__ %dx, (%rax)
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Practice: mov And Data Sizes
For each of the following mov instructions, determine the appropriate suffix 
based on the operands (e.g. movb, movw, movl or movq).

1. movl %eax, (%rsp)
2. movw (%rax), %dx
3. movb $0xff, %bl
4. movb (%rsp,%rdx,4),%dl
5. movq (%rdx), %rax
6. movw %dx, (%rax)
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mov
• The movabsq instruction is used to write a 64-bit Immediate (constant) value.
• The regular movq instruction can only take 32-bit immediates.
• 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax
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movz and movs
• There are two mov instructions that can be used to copy a smaller source to a 

larger destination: movz and movs.
• movz fills the remaining bytes with zeros
• movs fills the remaining bytes by sign-extending the most significant bit in the 

source.
• The source must be from memory or a register, and the destination is a 

register.
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movz and movs

Instruction Description

movzbw Move zero-extended byte to word

movzbl Move zero-extended byte to double word

movzwl Move zero-extended word to double word

movzbq Move zero-extended byte to quad word

movzwq Move zero-extended word to quad word

MOVZ S,R        R ← ZeroExtend(S)
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movz and movs

Instruction Description

movsbw Move sign-extended byte to word

movsbl Move sign-extended byte to double word

movswl Move sign-extended word to double word

movsbq Move sign-extended byte to quad word

movswq Move sign-extended word to quad word

movslq Move sign-extended double word to quad word

cltq Sign-extend %eax to %rax
%rax <- SignExtend(%eax)

MOVS S,R        R ← SignExtend(S)
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Register Sizes
• The operand forms with parentheses (e.g. mov (%rax)) require that registers in 

parentheses be the 64-bit registers.
• For that reason, you may see smaller registers extended with e.g. movs into 

the larger registers before these kinds of instructions.
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Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136: b8 00 00 00 00       mov    $0x0,%eax
40113b: ba 00 00 00 00       mov    $0x0,%edx
401140: 39 f0                cmp %esi,%eax
401142: 7d 0b                jge 40114f <sum_array+0x19>
401144: 48 63 c8             movslq %eax,%rcx
401147: 03 14 8f             add    (%rdi,%rcx,4),%edx
40114a: 83 c0 01             add    $0x1,%eax
40114d: eb f1                jmp 401140 <sum_array+0xa>
40114f: 89 d0                mov    %edx,%eax
401151: c3                   retq
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Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!



29

lea
The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies 
the value of src itself to the destination.

The syntax for the destinations is the same as 
mov.  The difference is how it handles the src.
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lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax), 
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.
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lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax), 
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax + 
what’s in %rcx) and copy data there into 
%rdx

Copy (what’s in %rax + what’s in %rcx) 
into %rdx.
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lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax), 
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax + 
what’s in %rcx) and copy data there into 
%rdx

Copy (what’s in %rax + what’s in %rcx) 
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and 
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.
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lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax), 
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax + 
what’s in %rcx) and copy data there into 
%rdx

Copy (what’s in %rax + what’s in %rcx) 
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and 
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

7(%rax, %rax, 8), %rdx Go to the address (7 + %rax + 8 * %rax) 
and copy data there into %rdx.

Copy (7 + %rax + 8 * %rax) into %rdx.

Unlike mov, which copies data at the address 
src to the destination, lea copies the value of 
src itself to the destination.
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Reverse Engineering Practice
void calculate(int x, int y, int *ptr) {

____?____;
}

----------

calculate:
leal (%rdi,%rsi,2), %eax
movl %eax, (%rdx)
ret

Note: assume x is in %rdi, y 
is in %rsi and ptr is in %rdx.
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Reverse Engineering Practice
void calculate(int x, int y, int *ptr) {

*ptr = x + 2 * y;
}

----------

calculate:
leal (%rdi,%rsi,2), %eax
movl %eax, (%rdx)
ret
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Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!
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A Note About Operand Forms
• Many instructions share the same address operand forms that mov uses.

• Eg. 7(%rax, %rcx, 2).

• These forms work the same way for other instructions, with the exception of
lea:

• It interprets this form as just the calculation, not the dereferencing
• lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx
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Unary Instructions
The following instructions operate on a single operand (register or memory):

Examples:
incq 16(%rax)
dec %rdx
not %rcx

Instruction Effect Description

inc D D ← D + 1 Increment

dec D D ← D - 1 Decrement

neg D D ← -D Negate

not D D ← ~D Complement
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Binary Instructions
The following instructions operate on two operands (both can be register or 
memory, source can also be immediate).  Both cannot be memory locations.  
Read it as, e.g. “Subtract S from D”:

Examples:
addq %rcx,(%rax)

xorq $16,(%rax, %rdx, 8)
subq %rdx,8(%rax)

Instruction Effect Description

add S, D D ← D + S Add

sub S, D D ← D - S Subtract

imul S, D D ← D * S Multiply

xor S, D D ← D ^ S Exclusive-or

or S, D D ← D | S Or

and S, D D ← D & S And
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Shift Instructions
The following instructions have two operands: the shift amount k and the 
destination to shift, D. k can be either an immediate value, or the byte register 
%cl (and only that register!)

Examples:
shll $3,(%rax)
shrl %cl,(%rax,%rdx,8)
sarl $4,8(%rax)

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift
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Shift Amount

• When using %cl, the width of what you are shifting determines what portion 
of %cl is used.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know how 
much to shift.

• If %cl = 0xff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3 
bits, which represent 7.  shlw shifts by 15 because it considers only the low-order 
log2(16) = 4 bits, which represent 15.

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift
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Assembly Exploration
• Let’s pull these commands together and see how some C code might be 

translated to assembly.
• Compiler Explorer is a handy website that lets you quickly write C code and see 

its assembly translation.  Let’s check it out!
• https://godbolt.org/z/Ecbde99e3

https://godbolt.org/z/Ecbde99e3
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Code Reference: calculate
int calculate(int x, int arr[]) {

int sum = x;
sum += arr[0];
sum <<= x;
sum &= 512;
return sum;

}

----------

calculate:
movl %edi, %ecx
movl %edi, %eax
addl (%rsi), %eax
sall %cl, %eax
andl $512, %eax
ret
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Large Multiplication
• Multiplying 64-bit numbers can produce a 128-bit result.  How does x86-64 

support this with only 64-bit registers?
• If you specify two operands to imul, it multiplies them together and truncates 

until it fits in a 64-bit register.
imul S, D D ← D * S

• If you specify one operand, it multiplies that by %rax, and splits the product 
across 2 registers.  It puts the high-order 64 bits in %rdx and the low-order 64 
bits in %rax.

Instruction Effect Description

imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply

mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply
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Division and Remainder

• Terminology: dividend / divisor = quotient with remainder
• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits 

are in %rax.  The divisor is the operand to the instruction.
• The quotient is stored in %rax, and the remainder in %rdx. 

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide
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Division and Remainder

• Terminology: dividend / divisor = quotient with remainder
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits 

are in %rax.  The divisor is the operand to the instruction.
• Most division uses only 64-bit dividends.  The cqto instruction sign-extends the 

64-bit value in %rax into %rdx to fill both registers with the dividend, as the 
division instruction expects.

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word
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Compiler Explorer Demo

https://godbolt.org/z/4cT75M4nd

https://godbolt.org/z/4cT75M4nd
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Code Reference: full_divide
// Returns x/y, stores remainder in location stored in remainder_ptr
long full_divide(long x, long y, long *remainder_ptr) {

long quotient = x / y;
long remainder = x % y;
*remainder_ptr = remainder;
return quotient;

}

-------

full_divide:
movq %rdi, %rax
movq %rdx, %rcx
cqto
idivq %rsi
movq %rdx, (%rcx)
ret
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Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!
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Assembly Exercise 1
000000000040116e <sum_example1>:
40116e: 8d 04 37          lea  (%rdi,%rsi,1),%eax
401171: c3                retq

Which of the following is most likely to have generated the above assembly?

// A)
void sum_example1() {

int x;
int y;
int sum = x + y;

}

// B)
int sum_example1(int x, int y) {

return x + y;
}

// C)
void sum_example1(int x, int y) {

int sum = x + y;
}
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Assembly Exercise 2
0000000000401172 <sum_example2>:

401172: 8b 47 0c      mov  0xc(%rdi),%eax
401175: 03 07         add  (%rdi),%eax
401177: 2b 47 18      sub  0x18(%rdi),%eax
40117a: c3            retq

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

}

What location or value in the assembly above represents the 
C code’s sum variable?

%eax
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Assembly Exercise 3
0000000000401172 <sum_example2>:

401172: 8b 47 0c      mov  0xc(%rdi),%eax
401175: 03 07         add  (%rdi),%eax
401177: 2b 47 18      sub  0x18(%rdi),%eax
40117a: c3            retq

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

}

What location or value in the assembly code above 
represents the C code’s 6 (as in arr[6])?

0x18
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Reverse Engineering 1
int add_to(int x, int arr[], int i) {

int sum = ___?___;
sum += arr[___?___];
return ___?___;

}

----------
// x in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx
movl %edi, %eax
addl (%rsi,%rdx,4), %eax
ret
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Reverse Engineering 1
int add_to(int x, int arr[], int i) {

int sum = ___?___;
sum += arr[___?___];
return ___?___;

}

----------
// x in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx // sign-extend i into full register
movl %edi, %eax // copy x into %eax
addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret
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Reverse Engineering 1
int add_to(int x, int arr[], int i) {

int sum = x;
sum += arr[i];
return sum;

}

----------
// x in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx // sign-extend i into full register
movl %edi, %eax // copy x into %eax
addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret
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Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[___?___] * ___?___;
z -= ___?___;
z >>= ___?___;
return ___?___;

}
----------
// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax
imull (%rdi), %eax
subl 4(%rdi), %eax
sarl $2, %eax
addl $2, %eax
ret
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Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[___?___] * ___?___;
z -= ___?___;
z >>= ___?___;
return ___?___;

}
----------
// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull (%rdi), %eax // multiply %eax by nums[0]
subl 4(%rdi), %eax // subtract nums[1] from %eax
sarl $2, %eax // shift %eax right by 2
addl $2, %eax // add 2 to %eax
ret
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Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[0] * y;
z -= nums[1];
z >>= 2;
return z + 2;

}
----------
// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull (%rdi), %eax // multiply %eax by nums[0]
subl 4(%rdi), %eax // subtract nums[1] from %eax
sarl $2, %eax // shift %eax right by 2
addl $2, %eax // add 2 to %eax
ret
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Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136: b8 00 00 00 00       mov    $0x0,%eax
40113b: ba 00 00 00 00       mov    $0x0,%edx
401140: 39 f0                cmp %esi,%eax
401142: 7d 0b                jge 40114f <sum_array+0x19>
401144: 48 63 c8             movslq %eax,%rcx
401147: 03 14 8f             add    (%rdi,%rcx,4),%edx
40114a: 83 c0 01             add    $0x1,%eax
40114d: eb f1                jmp 401140 <sum_array+0xa>
40114f: 89 d0                mov    %edx,%eax
401151: c3                   retq

We’re 1/2 of the way to understanding assembly! 
What looks understandable right now?

🤔
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Recap
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Next Time: control flow in assembly (while loops, if statements, and more)

Lecture 11 takeaway: There are 
assembly instructions for 
arithmetic and logical 
operations.  They share the 
same operand form as mov, but 
lea interprets them differently.  
There are also different register 
sizes that may be used in 
assembly instructions.
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Extra Practice

https://godbolt.org/z/hGKPWszq4

https://godbolt.org/z/hGKPWszq4
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Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = ___?___ + 1;
long result = x % ___?___;
return ___?___;

}
----------
// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax
leaq 1(%rdi), %rcx
movq %rcx, (%rsi)
cqto
idivq %rcx
movq %rdx, %rax
ret
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Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = ___?___ + 1;
long result = x % ___?___;
return ___?___;

}
----------
// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax // copy x into %rax
leaq 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi)       // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax
ret
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Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = x + 1;
long result = x % *ptr; // or x + 1
return result;

}
----------
// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax // copy x into %rax
leaq 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi)       // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax
ret
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Side Note: Old GCC Output
long func(long x, long *ptr) {

*ptr = x + 1;
long result = x % *ptr; // or x + 1
return result;

}
----------
// x in %rdi, ptr in %rsi
func:

leaq 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi)       // copy %rcx into *ptr
movq %rdi, %rax // copy x into %rax
cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax
ret


