
1
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 11
Assembly: Arithmetic and Logic

Reading: B&O 3.5-3.6

2

CS107 Topic 5: How does a
computer interpret and
execute C programs?

3

CS107 Topic 5
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better

code
• We can learn how to reverse engineer and exploit programs at the assembly

level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

4

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

Lecture 10 This Lecture Lecture 12 Lecture 13

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

5

Helpful Assembly Resources
• Course textbook (reminder: see relevant readings for each lecture on the

Calendar page, http://cs107.stanford.edu/calendar.html)
• CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-

64-reference.pdf
• CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html

http://cs107.stanford.edu/calendar.html
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/guide/x86-64.html

6

Learning Goals
• Learn how to perform arithmetic and logical operations in assembly
• Begin to learn how to read assembly and understand the C code that

generated it

7

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

8

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

9

mov
The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

10

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) What’s in %rax

4(%rax) What’s in %rax, plus 4

(%rax, %rdx) Sum of what’s in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) What’s in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx

8(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx,
plus 8

11

Operand Forms
Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟! R[𝑟!] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟!) M[R 𝑟!] Indirect

Memory 𝐼𝑚𝑚(𝑟") M[𝐼𝑚𝑚 + R 𝑟"] Base + displacement

Memory (𝑟" , 𝑟#) M[R 𝑟" + R 𝑟#] Indexed

Memory 𝐼𝑚𝑚(𝑟" , 𝑟#) M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟#] Indexed

Memory (, 𝑟# , 𝑠) M[R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(, 𝑟# , 𝑠) M[𝐼𝑚𝑚 + R 𝑟# . 𝑠] Scaled indexed

Memory (𝑟" , 𝑟# , 𝑠) M[R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟" , 𝑟# , 𝑠) M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

12

Most General Operand Form

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement:
pos/neg constant
(if missing, = 0)

Index: register
(if missing, = 0)

Scale must be
1,2,4, or 8
(if missing, = 1)

Base: register (if
missing, = 0)

13

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

14

Data Sizes
Data sizes in assembly have slightly different terminology to get used to:
• A byte is 1 byte.
• A word is 2 bytes.
• A double word is 4 bytes.
• A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:
• b means byte
• w means word
• l means double word
• q means quad word

15

Register Sizes
63Bit: 071531

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rsi %esi %si %sil

%rdi %edi %di %dil

16

Register Sizes

%rbp %ebp %bp %bpl

63Bit: 071531

%rsp %esp %sp %spl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b

17

Register Sizes

%r12 %r12d %r12w %r12b

63Bit: 071531

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b

18

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

19

mov Variants
• mov can take an optional suffix (b,w,l,q) that specifies the size of data to move:
movb, movw, movl, movq

• mov only updates the specific register bytes or memory locations indicated.
• Exception: movl writing to a register will also set high order 4 bytes to 0.

20

Practice: mov And Data Sizes
For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

1. mov__ %eax, (%rsp)
2. mov__ (%rax), %dx
3. mov__ $0xff, %bl
4. mov__ (%rsp,%rdx,4),%dl
5. mov__ (%rdx), %rax
6. mov__ %dx, (%rax)

21

Practice: mov And Data Sizes
For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

1. movl %eax, (%rsp)
2. movw (%rax), %dx
3. movb $0xff, %bl
4. movb (%rsp,%rdx,4),%dl
5. movq (%rdx), %rax
6. movw %dx, (%rax)

22

mov
• The movabsq instruction is used to write a 64-bit Immediate (constant) value.
• The regular movq instruction can only take 32-bit immediates.
• 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

23

movz and movs
• There are two mov instructions that can be used to copy a smaller source to a

larger destination: movz and movs.
• movz fills the remaining bytes with zeros
• movs fills the remaining bytes by sign-extending the most significant bit in the

source.
• The source must be from memory or a register, and the destination is a

register.

24

movz and movs

Instruction Description

movzbw Move zero-extended byte to word

movzbl Move zero-extended byte to double word

movzwl Move zero-extended word to double word

movzbq Move zero-extended byte to quad word

movzwq Move zero-extended word to quad word

MOVZ S,R R ← ZeroExtend(S)

25

movz and movs

Instruction Description

movsbw Move sign-extended byte to word

movsbl Move sign-extended byte to double word

movswl Move sign-extended word to double word

movsbq Move sign-extended byte to quad word

movswq Move sign-extended word to quad word

movslq Move sign-extended double word to quad word

cltq Sign-extend %eax to %rax
%rax <- SignExtend(%eax)

MOVS S,R R ← SignExtend(S)

26

Register Sizes
• The operand forms with parentheses (e.g. mov (%rax)) require that registers in

parentheses be the 64-bit registers.
• For that reason, you may see smaller registers extended with e.g. movs into

the larger registers before these kinds of instructions.

27

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

28

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

29

lea
The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

30

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

31

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

32

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

33

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

7(%rax, %rax, 8), %rdx Go to the address (7 + %rax + 8 * %rax)
and copy data there into %rdx.

Copy (7 + %rax + 8 * %rax) into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

34

Reverse Engineering Practice
void calculate(int x, int y, int *ptr) {

____?____;
}

calculate:
leal (%rdi,%rsi,2), %eax
movl %eax, (%rdx)
ret

Note: assume x is in %rdi, y
is in %rsi and ptr is in %rdx.

35

Reverse Engineering Practice
void calculate(int x, int y, int *ptr) {

*ptr = x + 2 * y;
}

calculate:
leal (%rdi,%rsi,2), %eax
movl %eax, (%rdx)
ret

36

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

37

A Note About Operand Forms
• Many instructions share the same address operand forms that mov uses.

• Eg. 7(%rax, %rcx, 2).

• These forms work the same way for other instructions, with the exception of
lea:

• It interprets this form as just the calculation, not the dereferencing
• lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

38

Unary Instructions
The following instructions operate on a single operand (register or memory):

Examples:
incq 16(%rax)
dec %rdx
not %rcx

Instruction Effect Description

inc D D ← D + 1 Increment

dec D D ← D - 1 Decrement

neg D D ← -D Negate

not D D ← ~D Complement

39

Binary Instructions
The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Examples:
addq %rcx,(%rax)

xorq $16,(%rax, %rdx, 8)
subq %rdx,8(%rax)

Instruction Effect Description

add S, D D ← D + S Add

sub S, D D ← D - S Subtract

imul S, D D ← D * S Multiply

xor S, D D ← D ^ S Exclusive-or

or S, D D ← D | S Or

and S, D D ← D & S And

40

Shift Instructions
The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Examples:
shll $3,(%rax)
shrl %cl,(%rax,%rdx,8)
sarl $4,8(%rax)

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

41

Shift Amount

• When using %cl, the width of what you are shifting determines what portion
of %cl is used.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.

• If %cl = 0xff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3
bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

42

Assembly Exploration
• Let’s pull these commands together and see how some C code might be

translated to assembly.
• Compiler Explorer is a handy website that lets you quickly write C code and see

its assembly translation. Let’s check it out!
• https://godbolt.org/z/Ecbde99e3

https://godbolt.org/z/Ecbde99e3

43

Code Reference: calculate
int calculate(int x, int arr[]) {

int sum = x;
sum += arr[0];
sum <<= x;
sum &= 512;
return sum;

}

calculate:
movl %edi, %ecx
movl %edi, %eax
addl (%rsi), %eax
sall %cl, %eax
andl $512, %eax
ret

44

Large Multiplication
• Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64

support this with only 64-bit registers?
• If you specify two operands to imul, it multiplies them together and truncates

until it fits in a 64-bit register.
imul S, D D ← D * S

• If you specify one operand, it multiplies that by %rax, and splits the product
across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description

imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply

mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply

45

Division and Remainder

• Terminology: dividend / divisor = quotient with remainder
• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits

are in %rax. The divisor is the operand to the instruction.
• The quotient is stored in %rax, and the remainder in %rdx.

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

46

Division and Remainder

• Terminology: dividend / divisor = quotient with remainder
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits

are in %rax. The divisor is the operand to the instruction.
• Most division uses only 64-bit dividends. The cqto instruction sign-extends the

64-bit value in %rax into %rdx to fill both registers with the dividend, as the
division instruction expects.

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word

47

Compiler Explorer Demo

https://godbolt.org/z/4cT75M4nd

https://godbolt.org/z/4cT75M4nd

48

Code Reference: full_divide
// Returns x/y, stores remainder in location stored in remainder_ptr
long full_divide(long x, long y, long *remainder_ptr) {

long quotient = x / y;
long remainder = x % y;
*remainder_ptr = remainder;
return quotient;

}

full_divide:
movq %rdi, %rax
movq %rdx, %rcx
cqto
idivq %rsi
movq %rdx, (%rcx)
ret

49

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

50

Assembly Exercise 1
000000000040116e <sum_example1>:
40116e: 8d 04 37 lea (%rdi,%rsi,1),%eax
401171: c3 retq

Which of the following is most likely to have generated the above assembly?

// A)
void sum_example1() {

int x;
int y;
int sum = x + y;

}

// B)
int sum_example1(int x, int y) {

return x + y;
}

// C)
void sum_example1(int x, int y) {

int sum = x + y;
}

51

Assembly Exercise 2
0000000000401172 <sum_example2>:

401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub 0x18(%rdi),%eax
40117a: c3 retq

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

}

What location or value in the assembly above represents the
C code’s sum variable?

%eax

52

Assembly Exercise 3
0000000000401172 <sum_example2>:

401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub 0x18(%rdi),%eax
40117a: c3 retq

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

}

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

0x18

53

Reverse Engineering 1
int add_to(int x, int arr[], int i) {

int sum = ___?___;
sum += arr[___?___];
return ___?___;

}

// x in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx
movl %edi, %eax
addl (%rsi,%rdx,4), %eax
ret

54

Reverse Engineering 1
int add_to(int x, int arr[], int i) {

int sum = ___?___;
sum += arr[___?___];
return ___?___;

}

// x in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx // sign-extend i into full register
movl %edi, %eax // copy x into %eax
addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

55

Reverse Engineering 1
int add_to(int x, int arr[], int i) {

int sum = x;
sum += arr[i];
return sum;

}

// x in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx // sign-extend i into full register
movl %edi, %eax // copy x into %eax
addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

56

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[___?___] * ___?___;
z -= ___?___;
z >>= ___?___;
return ___?___;

}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax
imull (%rdi), %eax
subl 4(%rdi), %eax
sarl $2, %eax
addl $2, %eax
ret

57

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[___?___] * ___?___;
z -= ___?___;
z >>= ___?___;
return ___?___;

}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull (%rdi), %eax // multiply %eax by nums[0]
subl 4(%rdi), %eax // subtract nums[1] from %eax
sarl $2, %eax // shift %eax right by 2
addl $2, %eax // add 2 to %eax
ret

58

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[0] * y;
z -= nums[1];
z >>= 2;
return z + 2;

}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull (%rdi), %eax // multiply %eax by nums[0]
subl 4(%rdi), %eax // subtract nums[1] from %eax
sarl $2, %eax // shift %eax right by 2
addl $2, %eax // add 2 to %eax
ret

59

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140: 39 f0 cmp %esi,%eax
401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

We’re 1/2 of the way to understanding assembly!
What looks understandable right now?

🤔

60

Recap
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Next Time: control flow in assembly (while loops, if statements, and more)

Lecture 11 takeaway: There are
assembly instructions for
arithmetic and logical
operations. They share the
same operand form as mov, but
lea interprets them differently.
There are also different register
sizes that may be used in
assembly instructions.

61

Extra Practice

https://godbolt.org/z/hGKPWszq4

https://godbolt.org/z/hGKPWszq4

62

Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = ___?___ + 1;
long result = x % ___?___;
return ___?___;

}

// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax
leaq 1(%rdi), %rcx
movq %rcx, (%rsi)
cqto
idivq %rcx
movq %rdx, %rax
ret

63

Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = ___?___ + 1;
long result = x % ___?___;
return ___?___;

}

// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax // copy x into %rax
leaq 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax
ret

64

Reverse Engineering 3
long func(long x, long *ptr) {

*ptr = x + 1;
long result = x % *ptr; // or x + 1
return result;

}

// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax // copy x into %rax
leaq 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax
ret

65

Side Note: Old GCC Output
long func(long x, long *ptr) {

*ptr = x + 1;
long result = x % *ptr; // or x + 1
return result;

}

// x in %rdi, ptr in %rsi
func:

leaq 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
movq %rdi, %rax // copy x into %rax
cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax
ret

