CS107, Lecture 11
Assembly: Arithmetic and Logic

Reading: B&O 3.5-3.6

This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107 Topic 5: How does a
computer interpret and
execute C programs?

CS107 Topic 5

How does a computer interpret and execute C programs?

Why is answering this question important?

* Learning how our code is really translated and executed helps us write better
code

* We can learn how to reverse engineer and exploit programs at the assembly
level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

Lecture 10 This Lecture Lecture 12 Lecture 13

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 4

Helpful Assembly Resources

* Course textbook (reminder: see relevant readings for each lecture on the
Calendar page, http://cs107.stanford.edu/calendar.html)

* CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-
64-reference.pdf

e CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html

http://cs107.stanford.edu/calendar.html
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/guide/x86-64.html

Learning Goals

* Learn how to perform arithmetic and logical operations in assembly

* Begin to learn how to read assembly and understand the C code that
generated it

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! >

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 3

The mov instruction copies bytes from one place to another;

it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
* Immediate (constant value, like a number) (only src)

* Register

* Memory Location
(at most one of src, dst)

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) What’s in %rax

4(%rax) What's in %rax, plus 4
(%rax, %rdx) Sum of what’s in %rax and %rdx

4(%rax, %rdx)

Sum of values in %rax and %rdx, plus 4

(, %rcx, 4)

What’s in %rcx, times 4 (multiplier can be 1,
2,4, 8)

(%rax, %rcx, 2)

What's in %rax, plus 2 times what’s in %rcx

8(%rax, %rcx, 2)

What's in %rax, plus 2 times what’s in %rcx,
plus 8

10

Operand Forms

Type Operand Value Name
Immediate $Imm Imm Immediate
Register Ty R[r,] Register
Memory Imm M[Imm] Absolute
Memory (1) M[R[7,]] Indirect
Memory Imm(r) M[Imm + R[rp]] Base + displacement
Memory (1, 17) M[R[r,] + R[n;]] Indexed
Memory Imm(ry, 1;) M[Imm + R[r,] + R[r;]] Indexed
Memory (1, 8) M[R[r;] - s] Scaled indexed
Memory Imm(,1;,) M[Imm + R[r;] - s] Scaled indexed
Memory (15,13, S) M[R[rp] + R[r;] - s] Scaled indexed
Memory Imm(ry,,1;,S) M[Imm + R[r,] + R[r;] -+ s] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

Most General Operand Form

Imm(r,, r;, S)isequivalentto
address/Imm + R[r/'b] + Rwi]*%

L P
Displacement: Index: register
pos/neg constant (if missing, = 0)

(if missing, = 0) Base: register (if
missing, = 0)

Scale must be
1,2,4, or 8
(if missing, = 1)

12

Lecture Plan

* Recap: mov so far

* Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 13

Data sizes in assembly have slightly different terminology to get used to:
* A byte is 1 byte.

 Aword is 2 bytes.

* A double word is 4 bytes.

* A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:

* b means byte

* W means word

* 1 means double word

* d means quad word 14

Register Sizes

Bit: 63 31 15 7 %)
%rax %eax |%ax [%al |“
%rbx %ebx lwbx [o1 |“
%rcx %ecx ex el |“
%rdx %edx lwdx [%a1 |“
%rsi %esi ‘%si | %si1 |“
%rdi %edi |%di [xdil |“

15

Register Sizes

Bit: 63 31 15 7 %)
%rbp %ebp |%bp [%bp1 |“
%rsp %esp ‘%sp |%spl |“
%8 %r8d |%rew [%rsb |“
%r9 %r9d ‘ %row |%rob |“
%r10 %r10d |%r10w [%r1eb |“
%r11 %r11d ‘ %rllw |%riib |“

16

Register Sizes

Bit: 63 31 1> . :
412 %r12d |%r12w [%r12b |“
%r13 %r13d |%r13w [%r13b |“
%14 %r14d ‘ %ridw | %riab |“
%r15 %r15d ‘ %ri5w | %risb |“

17

Register Responsibilities

Some registers take on special responsibilities during program execution.
* %rax stores the return value

* %rdi stores the first parameter to a function

* %rsi stores the second parameter to a function

* %rdx stores the third parameter to a function

* %rip stores the address of the next instruction to execute

* %rsp stores the address of the current top of the stack

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 18

NVALEHERLIS

* mov can take an optional suffix (b,w,l,q) that specifies the size of data to move:
movb, movw, movl, movq

* mov only updates the specific register bytes or memory locations indicated.
* Exception: movl writing to a register will also set high order 4 bytes to 0.

19

Practice: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

. mov__ %eax, (%rsp)

. mov__ (%rax), »dx

. mov__ $oxff, %bl

. mov__ (%rsp,%rdx,4),%dl

. mov__ (%rdx), %rax

o vl A W DN B

. mov__ %dx, (%rax)

20

Practice: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

. movl %eax, (%rsp)

. movw (%rax), %dx

. movb $Oxff, %bl

. movb (%rsp,%srdx,4),%dl

. movqg (%rdx), %rax

o vl A W DN B

. movw %dx, (%rax)

21

* The movabsq instruction is used to write a 64-bit Immediate (constant) value.

* The regular movq instruction can only take 32-bit immediates.
* 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

22

movz and movs

* There are two mov instructions that can be used to copy a smaller source to a
larger destination: movz and movs.

* movz fills the remaining bytes with zeros

* movs fills the remaining bytes by sign-extending the most significant bit in the
source.

* The source must be from memory or a register, and the destination is a
register.

23

movz and movs

MOVZ S,R R « ZeroExtend(S)

Instruction Description

movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
movzbq Move zero-extended byte to quad word
movzwg Move zero-extended word to quad word

24

movz and movs

MOVS S,R R « SignExtend(S)

Instruction Description

movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word
movsbq Move sign-extended byte to quad word
MOV SW(Move sign-extended word to quad word
movslq Move sign-extended double word to quad word
cltq Sign-extend %eax to %rax

%rax <- SignExtend(%eax)

25

Register Sizes

* The operand forms with parentheses (e.g. mov (%rax)) require that registers in
parentheses be the 64-bit registers.

* For that reason, you may see smaller registers extended with e.g. movs into
the larger registers before these kinds of instructions.

26

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int 1 = @; 1 < nelems; i++) {
sum += arr[i];

}
return sum;
}
0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0, %eax
40113b: ba 00 00 00 00 mov $0x0, %edx
401140: 39 0 cmp %esi,neax
401142 7d @b jge 40114f <sum_array+0x19>
401144 48 63 c8 movslq %eax,%rcx
401147 : 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 co0 01 add $0x1, %eax
40114d: eb f1l jmp 401140 <sum_array+0xa>
40114f: 89 do mov %edx, %eax

401151: c3 retq 27

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! >8

The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

29

e e e o

6 (%r-ax) , srdx Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

30

e e e o

6(%rax), %rdx

(%rax, %rcx), %rdx

Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

31

e e e o

6(%rax), %rdx

(%rax, %rcx), %rdx

(%rax, %rcx, 4), %rdx

Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

Go to the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

32

6 (%r'ax) , srdx Go to the address (6 + what’s in %rax), = Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

(%rax, %pcx) , srdx Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

(%rax, %rcx, 4), %rdx Goto the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

7(%rax, %rax, 8), %rdx ©Goto the address (7 + %rax + 8 * %rax) Copy (7 + %rax + 8 * %rax) into %rdx.
and copy data there into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

33

Reverse Engineering Practice

void calculate(int x, int y, int *ptr) {
? .

} Note: assume x is in %rdi, y
IS in %rsi and ptr is in %rdx.

calculate:
leal (%rdi,%rsi,2), %eax
movl %eax, (%rdx)
ret

34

Reverse Engineering Practice

void calculate(int x, int y, int *ptr) {
*ptr = x + 2 * y;

calculate:
leal (%rdi,%rsi,2), %eax
movl %eax, (%rdx)
ret

35

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 36

A Note About Operand Forms

* Many instructions share the same address operand forms that mov uses.
e Eg. 7(%rax, %rcx, 2).
* These forms work the same way for other instructions, with the exception of
lea:

* It interprets this form as just the calculation, not the dereferencing
* lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

37

Unary Instructions

The following instructions operate on a single operand (register or memory):

Instruction Effect Description
inc D De«<D+1 Increment
dec D De«<D-1 Decrement
neg D D « -D Negate

not D D « ~D Complement

Examples:
incqg 16(%rax)
dec %rdx

not %rcx

38

Binary Instructions

The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Instruction Effect Description
add S, D D«<D+S Add

sub S, D D«<D-S Subtract
imul S, D D«D*S Multiply
xor S, D De«<DA”™S Exclusive-or
or S, D De«D]| S Or

and S, D D«D&S And

Examples:

addg %rcx, (%rax)
xorqg $16, (%rax, %rdx, 8)
subg %rdx, 8(%rax) 39

The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Instruction Effect Description

sal k, D D « D << k Left shift

shl k, D D « D << k Left shift (same as sal)
sar k, D D« D >,k Arithmetic right shift
shr k, D D« D> k Logical right shift

Examples:
shll $3, (%rax)
shrl %cl, (%rax,%rdx,8)
sarl $4,8(%rax)

40

Instruction Effect Description

sal k, D D « D << k Left shift

shl k, D D «D << k Left shift (same as sal)
sar k, D D« D >,k Arithmetic right shift
shr k, D D«D >, k Logical right shift

* When using %cl, the width of what you are shifting determines what portion
of %cl is used.

* For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.

* If %cl = Oxff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3
bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

41

Assembly Exploration

* Let’s pull these commands together and see how some C code might be
translated to assembly.

* Compiler Explorer is a handy website that lets you quickly write C code and see
its assembly translation. Let’s check it out!

* https://godbolt.org/z/Ecbde99e3

42

https://godbolt.org/z/Ecbde99e3

Code Reference: calculate

int calculate(int x, int arr[]) {
int sum = X;
sum += arr[0];
sum <<= X;
sum &= 512;
return sum;

calculate:
movl %edi, %ecx
movl %edi, %eax
addl (%rsi), %eax
sall %cl, %eax
andl $512, %eax
ret

43

Large Multiplication

* Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64
support this with only 64-bit registers?

* If you specify two operands to imul, it multiplies them together and truncates
until it fits in a 64-bit register.

imul S, D De«D*S

* If you specify one operand, it multiplies that by %rax, and splits the product
across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description
imulg S R[%rdx]:R[%rax] « S x R[%rax] Signed full multiply

mulg S R[%rdx]:R[%rax] « S x R[%rax] Unsigned full multiply

44

Division and Remainder

Instruction Effect Description

idivqg S R[%rdx] « R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divg S R[%rdx] « R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] < R[%rdx]:R[%rax] = S

* Terminology: dividend / divisor = quotient with remainder

* x86-64 supports dividing up to a 128-bit value by a 64-bit value.

* The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits
are in %rax. The divisor is the operand to the instruction.

* The quotient is stored in %rax, and the remainder in %rdx.

45

Division and Remainder

Instruction Effect Description

idivqg S R[%rdx] « R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divg S R[%rdx] « R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] < R[%rdx]:R[%rax] = S

cqgto R[%rdx]:R[%rax] <« SignExtend(R[%rax]) Convert to oct word

* Most division uses only 64-bit dividends. The cqto instruction sign-extends the
64-bit value in %rax into %rdx to fill both registers with the dividend, as the

division instruction expects. N

Compiler Explorer Demo

https://godbolt.org/z/4cT75M4nd

https://godbolt.org/z/4cT75M4nd

Code Reference: full divide

// Returns x/y, stores remainder in location stored in remainder_ ptr

long full divide(long x, long y, long *remainder ptr) {
long quotient = x / vy;

long remainder = X % y;
*remainder ptr = remainder;

return quotient;

full divide:
movq %rdi, %rax
movq %rdx, %rcx
cqgto
idivqg %rsi
movq %rdx, (%rcx)
ret 48

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 49

Assembly Exercise 1

00000000401 16e <sum examplel>:
40116e: 8d 04 37 lea (%rdi,%rsi,1),%eax

401171: c3 retq

Which of the following is most likely to have generated the above assembly?

B)
int sum_examplel(int x, int y) {

/] R)

void sum_examplel() {
int Xx; return x + y;
int y; }
int sum = X + y;

}

// C)

void sum_examplel(int x, int y) {
int sum = x + y;

}
50

Assembly Exercise 2

000000000P401172 <sum example2>:

401172: 8b 47 0Oc mov Oxc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub 0x18(%rdi),%eax
490117a: c3 retqg
int sum_example2(int arr[]) { What location or value in the assembly above represents the
int sum = 9; C code’s sum variable?

sum += arr[0];
sum += arr[3];

sum -= arr[6]; OA)eax

return sum;

Assembly Exercise 3

000000000P401172 <sum example2>:

401172: 8b 47 0Oc mov Oxc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub 0x18(%rdi),%eax
490117a: c3 retqg
int sum_example2(int arr[]) { What location or value in the assembly code above
int sum = 9; represents the C code’s 6 (as in arr[6])?
sum += arr[0];
+= [3];
iﬂﬂ -= Zii[cs]; Ox18
return sum;
} 52

Reverse Engineering 1

int add_to(int x, int arr[], int i) {

int sum = ? ;
sum += arr[? 1;
return ? ;

// X 1n %edi, arr 1in %rsi, 1 1n %edxX
add_to:

movslq %edx, 7%rdx

movl %edi, %eax

addl (%rsi,%rdx,4), %eax

ret

53

Reverse Engineering 1

int add_to(int x, int arr[], int i) {

int sum = ? ;
sum += arr[? 1;
return ? ;
}
// X 1n %edi, arr 1in %rsi, 1 1n %edxX
add_to:
movslq %edx, 7%rdx // sign-extend 1 into full register
movl %edi, %eax // copy X into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

54

Reverse Engineering 1

int add _to(int x, int arr[], int 1) {
int sum = X;
sum += arr[i];
return sum;

}

// X 1n %edi, arr 1in %rsi, 1 1n %edxX

add_to:
movslq %edx, 7%rdx // sign-extend 1 into full register
movl %edi, %eax // copy X into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

55

Reverse Engineering 2

int elem arithmetic(int nums[], int y) {

int z = nums| ?] *
z -= ?

J
Z >>= ? ;
return ? ;

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

?

)

56

Reverse Engineering 2

int elem arithmetic(int nums[], int y) {

int z = nums| ?]
Z -= ?

J
Z >>= ? ;
return ? ;

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

X

//
//
//
//
//

?
. 5

copy y into %eax

multiply %eax by nums[O]
subtract nums[1] from %eax
shift %eax right by 2

add 2 to %eax

57

Reverse Engineering 2

int elem_arithmetic(int nums[], int y) {

int z = nums[@] * y;
Zz -= nums[1];

Z >>= 2;

return z + 2;

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

//
//
//
//
//

copy y into %eax

multiply %eax by nums[O]
subtract nums[1] from %eax
shift %eax right by 2

add 2 to %eax

58

Our First Assembly

int sum_array(int arr[], int nelems) { |We’re 1/2 of the way to understanding assembly!
int sum = 0; What looks understandable right now?
for (int 1 = @; 1 < nelems; i++) {
sum += arr[i];

}
return sum;
}
0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0, %eax
40113b: ba 00 00 00 00 mov $0x0, %edx
401140: 39 0 cmp %esi,neax
401142 7d @b jge 40114f <sum_array+0x19>
401144 48 63 c8 movslq %eax,%rcx
401147 : 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 co 01 add $0x1, %eax Go o)
40114d: eb f1l jmp 401140 <sum_array+0xa> &r2>)
40114f: 89 do mov %edx, %eax o

401151 c3 retq 59

* Recap: mov so far Lecture 11 takeaway: There are
* Data and Register Sizes assembly instructions for

* The lea Instruction arithmetic and logical

* Logical and Arithmetic Operations | operations. They share the

* Practice: Reverse Engineering same operand form as moyv, but

lea interprets them differently.
There are also different register
sizes that may be used in
assembly instructions.

Next Time: control flow in assembly (while loops, if statements, and more) 60

Extra Practice

https://godbolt.org/z/hGKPWszg4

61

https://godbolt.org/z/hGKPWszq4

Reverse Engineering 3

long func(long x, long *ptr) {

*ptr = ? + 1;
long result = x % ? 5
return ? ;
}
// X in %rdi, ptr 1in %rsi
func:

movq %rdi, %rax
leag 1(%rdi), %rcx
movq %rcx, (%rsi)
cqgto

idivg %rcx

movq %rdx, %rax
ret

62

Reverse Engineering 3

long func(long x, long *ptr) {

*ptr = ? + 1;
long result = x % ? 5
return ? ;
}
// X in %rdi, ptr 1in %rsi
func:
movq %rdi, %rax // copy X into Z%rax
leag 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax

ret

63

Reverse Engineering 3

long func(long x, long *ptr) {
*ptr = X + 1;
long result = x % *ptr; // or x + 1
return result;

}
// X in %rdi, ptr 1in %rsi
func:
movq %rdi, %rax // copy X into Z%rax
leag 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax

ret

64

Side Note: Old GCC Output

long func(long x, long *ptr) {
*ptr = X + 1;
long result = x % *ptr; // or x + 1
return result;

}
// X in %rdi, ptr 1in %rsi
func:
leag 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
movq %rdi, %rax // copy x into %rax
cqto // sign-extend x into %rdx
idivg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax

ret

65

