
1
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, Lisa Yan, Jerry Cain and others.

CS107, Lecture 12
Assembly: Control Flow

Reading: B&O 3.6

2

CS107 Topic 5: How does a
computer interpret and
execute C programs?

3

CS107 Topic 5
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better

code
• We can learn how to reverse engineer and exploit programs at the assembly

level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

4

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

Lecture 10 Lecture 11 This Lecture Lecture 13

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

5

Learning Goals
• Understand how assembly implements loops and control flow
• Learn about how assembly stores comparison and operation results in

condition codes

6

Lecture Plan
• Recap: Assembly So Far
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

7

Lecture Plan
• Recap: Assembly So Far
• Assembly ExecuJon and %rip
• Control Flow Mechanics

• CondiEon Codes
• Assembly InstrucEons

• If statements
• Loops

• While loops
• For loops

• Other InstrucJons That Depend On CondiJon Codes

8

mov
The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

9

lea
The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

10

Arithmetic and Logical Operators
• Many instrucJons share the same address operand forms that mov uses.

• Eg. 7(%rax, %rcx, 2).

• E.g. add, sub, imul, etc.

11

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[___?___] * ___?___;
z -= ___?___;
z >>= ___?___;
return ___?___;

}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax
imull (%rdi), %eax
subl 4(%rdi), %eax
sarl $2, %eax
addl $2, %eax
ret

12

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[___?___] * ___?___;
z -= ___?___;
z >>= ___?___;
return ___?___;

}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull (%rdi), %eax // multiply %eax by nums[0]
subl 4(%rdi), %eax // subtract nums[1] from %eax
sarl $2, %eax // shift %eax right by 2
addl $2, %eax // add 2 to %eax
ret

13

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {

int z = nums[0] * y;
z -= nums[1];
z >>= 2;
return z + 2;

}

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull (%rdi), %eax // multiply %eax by nums[0]
subl 4(%rdi), %eax // subtract nums[1] from %eax
sarl $2, %eax // shift %eax right by 2
addl $2, %eax // add 2 to %eax
ret

14

Lecture Plan
• Recap: Assembly So Far
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

15

Executing Instructions

What does it mean for a program
to execute?

16

Executing Instructions
So far:
• Program values can be stored in memory or registers.
• Assembly instructions read/write values back and forth

between registers (on the CPU) and memory.
• Assembly instructions are also stored in memory.

Today:
• Who controls the instructions?

How do we know what to do now or next?
Answer:
• The program counter (PC), %rip.

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

17

Register Responsibilities
Some registers take on special responsibiliJes during program execuJon.
• %rax stores the return value
• %rdi stores the first parameter to a funcJon
• %rsi stores the second parameter to a funcJon
• %rdx stores the third parameter to a funcJon
• %rip stores the address of the next instrucJon to execute
• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

18

Instructions Are Just Bytes!

19

Instructions Are Just Bytes!

20

Instructions Are Just Bytes!

0x0

Heap

Stack

Data

Text (code)
Machine code

instructions

Main Memory

21

%rip
00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Heap

Stack

Data

Text (code)

Main Memory

22

%rip
00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ed

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

23

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ee

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

24

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f1

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

25

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f8

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

26

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

27

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

Special hardware sets the program counter
to the next instruction:
%rip += size of bytes of current instruction

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

28

Going In Circles
• How can we use this representation of execution to represent e.g. a loop?
• Key Idea: we can ”interfere” with %rip and set it back to an earlier instruction!

29

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

30

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instrucJon is an
uncondiEonal jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

31

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

32

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

33

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

This assembly represents an
infinite loop in C!

while (true) {…}

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

34

jmp
The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
jmp 404f8 <loop+0xb> # jump to instruction at 0x404f8

The destination can also be one of the usual operand forms (indirect jump):
jmp *%rax # jump to instruction at address in %rax

35

“Interfering” with %rip

1. How do we repeat instructions in a loop?
jmp [target]
• A 1-step unconditional jump (always

jump when we execute this instruction)

What if we want a conditional jump?

36

Lecture Plan
• Recap: Assembly So Far
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

37

Control
• In C, we have control flow statements like if, else, while, for, etc. to write

programs that are more expressive than just one instruction following another.
• This is conditional execution of statements: executing statements if one

condition is true, executing other statements if one condition is false, etc.
• How is this represented in assembly?

38

Control

if (x > y) {
// a

} else {
// b

}

In Assembly:
1. Calculate the condition result
2. Based on the result, go to a or b

39

Control
• In assembly, it takes more than one instruction to do these two steps.
• Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:
1. cmp S1, S2 // compare two values
2. je [target] or jne [target] or jl [target] or ... // conditionally jump

“jump if
equal”

“jump if
not equal”

“jump if
less than”

40

Conditional Jumps
There are also variants of jmp that jump only if certain conditions are true
(“Conditional Jump”). The jump location for these must be hardcoded into the
instruction.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)

jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)

jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=)

41

Control
Read cmp S1,S2 as “compare S2 to S1”:

// Jump if %edi > 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
cmp $1, %edi
jle [target]

Wait a minute – how does the jump instruction know anything about the
compared values in the earlier instruction?

42

Control
• The CPU has special registers called condition codes that are like “global

variables”. They automatically keep track of information about the most
recent arithmetic or logical operation.

• cmp compares via calculation (subtraction) and info is stored in the condition codes
• conditional jump instructions look at these condition codes to know whether to jump

• What exactly are the condition codes? How do they store this information?

43

Condition Codes
Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Most common condition codes:
• CF: Carry flag. The most recent operation generated a carry out of the most

significant bit. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most recent operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two’s-complement

overflow-either negative or positive.

44

Setting Condition Codes
The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 – S1

Instruction Description

cmpb Compare byte

cmpw Compare word

cmpl Compare double word

cmpq Compare quad word

45

Control

// Jump if %edi > 2
// calculates %edi – 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
// calculates %edi – 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
// calculates %edi – 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
// calculates %edi – 1
cmp $1, %edi
jle [target]

Read cmp S1,S2 as “compare S2 to S1”. It calculates S2 – S1 and updates the
condition codes with the result.

46

🌟 How to remember cmp/jmp
• CMP S1, S2 is S2 – S1 (just sets condition codes). But generally:

cmp S1, S2
jg … S2 S1 S2 - S1 > 0>

47

Conditional Jumps
Conditional jumps can look at subsets of the condition codes in order to check
their condition of interest.

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (ZF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)

ja Label jnbe Above (unsigned >) (CF = 0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF = 1)

jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

48

Setting Condition Codes
The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1

Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

Instruction Description

testb Test byte

testw Test word

testl Test double word

testq Test quad word

49

The test Instruction
• TEST S1, S2 is S2 & S1

test %edi, %edi
jns …

%edi & %edi is nonnegative
%edi is nonnegative

50

Condition Codes
• Previously-discussed arithmetic and logical instructions update these flags. lea

does not (it was intended only for address computations).
• Logical operations (xor, etc.) set carry and overflow flags to zero.
• Shift operations set the carry flag to the last bit shifted out and set the

overflow flag to zero.
• For more complicated reasons, inc and dec set the overflow and zero flags, but

leave the carry flag unchanged.

51

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases?

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi
je 40056f
add $0x1,%edi

0x10%edi

🤔

52

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases?

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi
je 40056f
add $0x1,%edi

0x10%edi

S2 - S1 == 0, so jump

S2 & S1 != 0, so don’t jump

53

Lecture Plan
• Recap: Assembly So Far
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

54

If Statements
How can we use instructions like cmp and conditional jumps to implement if
statements in assembly?

55

int if_then(int param1) {
if (__________) {

_________;
}

return __________;
}

Practice: Fill In The Blank

0000000000401126 <if_then>:
401126: cmp $0x6,%edi
401129: je 40112f
40112b: lea (%rdi,%rdi,1),%eax
40112e: retq
40112f: add $0x1,%edi
401132: jmp 40112b

🤔

56

int if_then(int param1) {
if (__________) {

_________;
}

return __________;
}

Practice: Fill In The Blank

0000000000401126 <if_then>:
401126: cmp $0x6,%edi
401129: je 40112f
40112b: lea (%rdi,%rdi,1),%eax
40112e: retq
40112f: add $0x1,%edi
401132: jmp 40112b

🤔

param1++

param1 * 2

param1 == 6

57

Common If-Else Construction

long absdiff(long x, long y) {
long result;
if (x < y) {

result = y – x;
} else {

result = x – y;
}

return result;
}

Check opposite of code condition
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

If-Else In C If-Else In Assembly pseudocode

58

Practice: Fill in the Blank

long absdiff(long x, long y) {
long result;
if (________) {

_________________ ;
} else {

_________________ ;
}

return result;
}

Check opposite of code condition
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

If-Else In C

If-Else In Assembly pseudocode

🤔

401134 <+0>: mov %rsi,%rax
401137 <+3>: cmp %rsi,%rdi
40113a <+6>: jge 0x401140 <absdiff+12>
40113c <+8>: sub %rdi,%rax
40113f <+11>: retq
401140 <+12>: sub %rsi,%rdi
401143 <+15>: mov %rdi,%rax
401146 <+18>: retq

59

Practice: Fill in the Blank

long absdiff(long x, long y) {
long result;
if (________) {

_________________ ;
} else {

_________________ ;
}

return result;
}

Check opposite of code condition
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

If-Else In C

If-Else In Assembly pseudocode

401134 <+0>: mov %rsi,%rax
401137 <+3>: cmp %rsi,%rdi
40113a <+6>: jge 0x401140 <absdiff+12>
40113c <+8>: sub %rdi,%rax
40113f <+11>: retq
401140 <+12>: sub %rsi,%rdi
401143 <+15>: mov %rdi,%rax
401146 <+18>: retq

x < y

result = y - x

result = x - y

60

If-Else Construction Variations

int test(int arg) {
int ret;
if (arg > 3) {

ret = 10;
} else {

ret = 0;
}

ret++;
return ret;

}

401134 <+0>: cmp $0x3,%edi
401137 <+3>: jle 0x401142 <test+14>
401139 <+5>: mov $0xa,%eax
40113e <+10>: add $0x1,%eax
401141 <+13>: retq
401142 <+14>: mov $0x0,%eax
401147 <+19>: jmp 0x40113e <test+10>

C Code Assembly

61

Lecture Plan
• Recap: Assembly So Far
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

62

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

63

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

Set %eax (i) to 0.

64

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax – 0x63.
This is 0 – 99 = -99, so it sets
the Sign Flag to 1.

65

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

jg means “jump if greater than”.
This jumps if %eax > 0x63. The
flags indicate this is false, so we do
not jump.

66

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

Add 1 to %eax (i).

67

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

Jump to another instruction.

68

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax – 0x63.
This is 1 – 99 = -98, so it sets
the Sign Flag to 1.

69

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

We continue in this pattern until
we make this conditional jump.
When will that be?

70

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

We will stop looping when this
comparison says that %eax > 0x63!

71

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

Then, we return from the function.

72

GCC Common While Loop Construction

while (test) {
body

}

Check opposite of code condition
Skip loop if test passes
Body
Jump back to test

C Assembly

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

From Previous Slide:

73

GCC Other While Loop Construction

while (test) {
body

}

Jump to check
Body
Check code condition
Jump to body if test passes

C Assembly

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

From Previous Slide:

74

Lecture Plan
• Recap: Assembly So Far
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

75

Common For Loop Construction

for (init; test; update) {
body

}

C For loop
Init
Check opposite of code condition
Skip loop if test passes
Body
Update
Jump back to test

Assembly pseudocode

init
while(test) {

body
update

}

C Equivalent While Loop

For loops and while loops are
treated (essentially) the same
when compiled down to assembly.

76

Back to Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136 <+0>: mov $0x0,%eax
40113b <+5>: mov $0x0,%edx
401140 <+10>: cmp %esi,%eax
401142 <+12>: jge 0x40114f <sum_array+25>
401144 <+14>: movslq %eax,%rcx
401147 <+17>: add (%rdi,%rcx,4),%edx
40114a <+20>: add $0x1,%eax
40114d <+23>: jmp 0x401140 <sum_array+10>
40114f <+25>: mov %edx,%eax
401151 <+27>: retq

1. Which register is C code’s sum?
2. Which register is C code’s i?
3. Which assembly instruction is C

code’s sum += arr[i]?
4. What are the cmp and jge

instructions doing?
(jge: signed jump greater than/equal)

🤔

77

Demo: GDB and Assembly

sum_array.c

78

gdb tips

layout split
info reg

p $eax
p $eflags

b *0x400546
b *0x400550 if $eax > 98

ni
si

⭐⭐⭐

View C, assembly, and gdb (lab5)
Print all registers

Print register value
Print all condition codes currently set

Set breakpoint at assembly instruction
Set conditional breakpoint

Next assembly instruction
Step into assembly instruction (will step
into function calls)

(ctrl-x a: exit,
ctrl-l: resize)

79

gdb tips
p/x $rdi
p/t $rsi

x $rdi
x/4bx $rdi
x/4wx $rdi

⭐⭐⭐
Print register value in hex
Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

80

Lecture Plan
• Recap: Assembly So Far
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

81

Condition Code-Dependent Instructions
There are three common instruction types that use condition codes:
• jmp instructions conditionally jump to a different next instruction
• set instructions conditionally set a byte to 0 or 1
• new versions of mov instructions conditionally move data

82

set: Read condition codes
set instrucJons condiJonally set a byte to 0 or 1.
• Reads current state of flags
• DesJnaJon is a single-byte register (e.g., %al) or single-byte memory locaJon
• Does not perturb other bytes of register
• Typically followed by movzbl to zero those bytes

int small(int x) {
return x < 16;

}

cmp $0xf,%edi
setle %al
movzbl %al, %eax
retq

83

set: Read condition codes
Instruction Synonym Set Condition (1 if true, 0 if false)

sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)

setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)

seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)

setb D setnae Below (unsigned <)

setbe D setna Below or equal (unsigned <=)

84

cmov: Conditional move
cmovx src,dst conditionally moves data in src to data in dst.
• Mov src to dst if condition x holds; no change otherwise
• src is memory address/register, dst is register
• May be more efficient than branch (i.e., jump)
• Often seen with C ternary operator: result = test ? then: else;

int max(int x, int y) {
return x > y ? x : y;

}

cmp %edi,%esi
mov %edi, %eax
cmovge %esi, %eax
retq

85

cmov: Conditional move
Instruction Synonym Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF = 1)

cmovns S,R NonnegaOve (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)

cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)

cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)

cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)

cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)

cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

86

Last Lab: Conditional Move
int signed_division(int x) {

return x / 4;
}

signed_division:
leal 3(%rdi), %eax
testl %edi, %edi
cmovns %edi, %eax
sarl $2, %eax
ret

Put x + 3 into %eax
Check the sign of x
If x is positive, put x into %eax
Divide %eax by 4

87

Optimizations
• Conditional Moves can sometimes eliminate “branches” (jumps), which are

particularly inefficient on modern computer hardware.
• Processors try to predict the future execution of instructions for maximum

performance. This is difficult to do with jumps.
• This is called branch prediction / speculative execution
• The Spectre vulnerability exploited an issue with this on modern processors to

access protected information
• Processors may also use out-of-order execution (look ahead)
• The Meltdown vulnerability exploited an issue with out-of-order execution on

modern processors to access protected data
• https://meltdownattack.com

https://meltdownattack.com/

88

Recap
• Recap: Assembly So Far
• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

Next time: Function calls in assembly

Lecture 12 takeaway: We represent
control flow in assembly by storing
information in condition codes and having
instructions that act differently depending
on the condition code values. Loops and
conditionals commonly use cmp or test
along with jumps to conditionally skip over
or repeat assembly instructions.

89

Practice: Fill in the blanks
<+0>: mov $0x1,%eax
<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>
<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi
<+22>: jmp 0x113e <loop+5>
<+24>: retq

long loop(long a, long b) {
long result = ___(1)___;
while (___(2)___) {

result = ____(3)_____;
a = ___(4)___;

}
return result;

}

🤔

GCC common while loop construction:
Test
Jump past loop if fails
Body
Jump to test

https://godbolt.org/z/zrW6c5MGa

https://godbolt.org/z/zrW6c5MGa

90

Practice: Fill in the blanks
<+0>: mov $0x1,%eax
<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>
<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi
<+22>: jmp 0x113e <loop+5>
<+24>: retq

long loop(long a, long b) {
long result = ___(1)___;
while (___(2)___) {

result = ____(3)_____;
a = ___(4)___;

}
return result;

}

🤔

GCC common while loop construction:
Test
Jump past loop if fails
Body
Jump to test

91

Practice: Fill in the blanks
<+0>: mov $0x1,%eax

<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>

<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi

<+22>: jmp 0x113e <loop+5>

<+24>: retq

long loop(long a, long b) {
long result = _________;
while (_________) {

result = ____________;
a = _________;

}
return result;

}

92

Practice: Fill in the blanks
long loop(long a, long b) {

long result = _________;
while (_________) {

result = ____________;
a = _________;

}
return result;

}

1
a < b

result*(a+b)
a + 1

<+0>: mov $0x1,%eax

<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>

<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi

<+22>: jmp 0x113e <loop+5>

<+24>: retq

93

test practice: What’s the C code?
0x400546 <test_func> test %edi,%edi
0x400548 <test_func+2> jns 0x400550 <test_func+10>
0x40054a <test_func+4> mov $0xfeed,%eax
0x40054f <test_func+9> retq
0x400550 <test_func+10> mov $0xaabbccdd,%eax
0x400555 <test_func+15> retq

🤔

94

test practice: What’s the C code?
0x400546 <test_func> test %edi,%edi
0x400548 <test_func+2> jns 0x400550 <test_func+10>
0x40054a <test_func+4> mov $0xfeed,%eax
0x40054f <test_func+9> retq
0x400550 <test_func+10> mov $0xaabbccdd,%eax
0x400555 <test_func+15> retq

int test_func(int x) {
if (x < 0) {

return 0xfeed;
}
return 0xaabbccdd;

}
(or anything
like this)

95

Practice: “Escape Room”
<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5,%eax
<escape_room+6> jg 0x114c <escape_room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je 0x1152 <escape_room+25>
<escape_room+13> mov $0x0,%eax
<escape_room+18> retq
<escape_room+19> mov $0x1,%eax
<escape_room+24> retq
<escape_room+25> mov $0x1,%eax
<escape_room+30> retq

What must be passed to the
escapeRoom function such that it
returns true (1) and not false (0)?

You don’t have to reverse-engineer C
code exactly!
Just figure out the big picture!

96

Practice: “Escape Room”
<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5,%eax
<escape_room+6> jg 0x114c <escape_room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je 0x1152 <escape_room+25>
<escape_room+13> mov $0x0,%eax
<escape_room+18> retq
<escape_room+19> mov $0x1,%eax
<escape_room+24> retq
<escape_room+25> mov $0x1,%eax
<escape_room+30> retq

First param > 2 or == 1.
What must be passed to the
escapeRoom function such that it
returns true (1) and not false (0)?

97

Exercise 2: Conditional jump

1. What is the value of %rip after
executing the jne instruction?
A. 4004d9
B. 4004db
C. 4004de
D. Other

0x5%edi00000000004004d6 <if_then>:
4004d6: 83 ff 06 cmp $0x6,%edi
4004d9: 75 03 jne 4004de <if_then+0x8>
400rdb: 83 c7 01 add $0x1,%edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004e1: c3 retq

🤔

2. What is the value of %eax
when we hit the retq instruction?
A. 4004e1
B. 0x2
C. 0xa
D. 0xc
E. Other

98

2. What is the value of %eax
when we hit the retq instrucJon?
A. 4004e1
B. 0x2
C. 0xa
D. 0xc
E. Other

Exercise 2: Conditional jump

1. What is the value of %rip after
executing the jne instruction?
A. 4004d9
B. 4004db
C. 4004de
D. Other

0x5%edi00000000004004d6 <if_then>:
4004d6: 83 ff 06 cmp $0x6,%edi
4004d9: 75 03 jne 4004de <if_then+0x8>
400rdb: 83 c7 01 add $0x1,%edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004e1: c3 retq

