CS107, Lecture 12

Assembly: Control Flow

Reading: B&O 3.6

This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, Lisa Yan, Jerry Cain and others.

CS107 Topic 5: How does a
computer interpret and
execute C programs?

CS107 Topic 5

How does a computer interpret and execute C programs?

Why is answering this question important?

* Learning how our code is really translated and executed helps us write better
code

* We can learn how to reverse engineer and exploit programs at the assembly
level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

Lecture 10 Lecture 11 This Lecture Lecture 13

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 4

Learning Goals

* Understand how assembly implements loops and control flow

e Learn about how assembly stores comparison and operation results in
condition codes

Lecture Plan

e Recap: Assembly So Far
* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

Lecture Plan

* Recap: Assembly So Far
* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

The mov instruction copies bytes from one place to another;

it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
* Immediate (constant value, like a number) (only src)

* Register

* Memory Location
(at most one of src, dst)

The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

Arithmetic and Logical Operators

* Many instructions share the same address operand forms that mov uses.
e Eg. 7(%rax, %rcx, 2).

* E.g. add, sub, imul, etc.

10

Reverse Engineering 2

int elem arithmetic(int nums[], int y) {

int z = nums| ?] *
z -= ?

J
Z >>= ? ;
return ? ;

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

?

)

11

Reverse Engineering 2

int elem arithmetic(int nums[], int y) {

int z = nums| ?]
Z -= ?

J
Z >>= ? ;
return ? ;

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

X

//
//
//
//
//

?
. 5

copy y into %eax

multiply %eax by nums[O]
subtract nums[1] from %eax
shift %eax right by 2

add 2 to %eax

12

Reverse Engineering 2

int elem_arithmetic(int nums[], int y) {

int z = nums[@] * y;
Zz -= nums[1];

Z >>= 2;

return z + 2;

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

//
//
//
//
//

copy y into %eax

multiply %eax by nums[O]
subtract nums[1] from %eax
shift %eax right by 2

add 2 to %eax

13

Lecture Plan

e Recap: Assembly So Far
* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

14

Executing Instructions

What does it mean for a program
to execute?

So far:
* Program values can be stored in memory or registers.

* Assembly instructions read/write values back and forth
between registers (on the CPU) and memory.

* Assembly instructions are also stored in memory.

Today:

e Who controls the instructions?
How do we know what to do now or next?

Answer:
* The program counter (PC), %rip.

40041d
4004fc

4004b
4004fa
40049
40048
40047
400416
40045
40044
40043
40042
40041

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

e5

89

48

55

16

Register Responsibilities

Some registers take on special responsibilities during program execution.

* %rip stores the address of the next instruction to execute

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

17

Instructions Are Just Bytes!

CPU

Register file

PC |ALU

— [System bus Memory bus

e

| A | I/Q Main | “hello, world\n”
' bridge memoryl . .. code

JU

Expansion slots for
other devices such

Bus interface

USB ' Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Display ¢ — ‘ L
Disk | stored on disk

. ”~

18

Viem

ory bus

l

Instructions Are Just Bytes!

Main Memory

Stack

Heap

e
Data

tructions —
instructions il
0x0

20

00000000004004ed <loop>:

4004ed:

400411 :
400418
4004fc:

55

c7 45 fc 00 00 00 00
83 45 fc 01
eb fa

push

mov1l
addl
jmp

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

4004fd

4004fc

4004fb |01
4004fa | fc
40049 45
400418 |83
40047 00
400416 00
400415 00
40044 00
40043 fc
400412 45
40041 c7
4004ed 55

Main Memory

-

Stack

Heap

Data

Text (code)

N |
[EY

000000000R4004ed <loop>:
) 4004ed: 55

4004f1: c7 45 fc 00 00 00 00
4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

4004fd

4004fc

4004fb |01
4004fa fc
push %rbp 4004f9 |45
40048 |83
movl $0x0,-0x4(%rbp) 40047 |00
addl $0x1, -0x4(%rbp) 4004f6 |00
jmp 400418 <loop+Oxb> 40045 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
4004f1 | c7
0x4004ed ——
4004ed |55

%rip

22

4004fd

4004fc

4004fb 01
00000000004004ed <loop>: deedfa | fc
4004ed: 55 push %rbp 400419 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
4004f8: 83 45 fc 91 addl $0x1, -0x4(%rbp) 4004f6 |00
4004fc: eb fa jmp 400418 <loop+0xb> 4004f5 | 00

4004f4 |00

4004f3 | fc
4004f2 |45
The program counter (PC), 100afl | o7
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | Ox4004ce T —————————pp
4004ed 55

%rip 23

4004fd

4004fc

4004fb 01
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 | 45

40048 83

» 4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0xb> 4004f5 | 00

4004f4 |00
4004f3 | fc
4004f2 |45
The program counter (PC), 1000l | o7
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004F1
4004ed 55

%rip 24

4004fd
4004fc
4004fb 01
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 | 45
40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp) 4004f7 |00
» 4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004f5 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
The program counter (PC), 1000l | o7
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004f8
4004ed 55

%Pip 25

4004fd

4004fc

4004fb 01
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4 (%rbp 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rby) 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopfoxb> [ioeafs |ee
4004f4 |00
4004f3 | fc
4004f2 |45

The program counter (PC), 1000l | o7
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004fc
4004ed 55

%rip 26

4004fd

4004fc

4004fb o1
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 400419 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4 (%rbp 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rby) 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopgfoxb> 4004f5 | 00

4004f4 |00

_ 4004f3 | fc

Special hardware sets the program counter rooata |as

to the next instruction: 100afl | o7
%rip += size of bytes of current instruction

Ox4004fc
4004ed 55

%rip 27

Going In Circles

* How can we use this representation of execution to represent e.g. a loop?
* Key Idea: we can “interfere” with %rip and set it back to an earlier instruction!

28

4004fd

4004fc

4004fb 01
00000000004004ed <loop>: feeata | fc
4004ed: 55 push %rbp 4004f9 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4 (%rbp 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rby) 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopfoxb> [ioeafs |ee
4004f4 |00
4004f3 | fc
4004f2 |45

The jmp instruction is an 1004F1 | 7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004FfC
4004ed 55

%rip 29

4004fd
4004fc
4004fb 01
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 400419 | 45
400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp) 4004f7 |00
» 4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004f5 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
The jmp instruction is an 1004F1 | 7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004FfC
4004ed 55

%Pip 30

4004fd

4004fc

4004fb 01
00000000004004ed <loop>: feeata | fc
4004ed: 55 push %rbp 4004f9 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4 (%rbp 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rby) 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopfoxb> [ioeafs |ee
4004f4 |00
4004f3 | fc
4004f2 |45

The jmp instruction is an 1004F1 | 7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004FfC
4004ed 55

%Pip 31

4004fd
4004fc
4004fb 01
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 | 45
40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp) 4004f7 |00
» 4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004f5 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
The jmp instruction is an 1004F1 | 7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004FfC
4004ed 55

%rip 32

4004fd
4004fc
4004fb o1
000000000V4004ed <loop>: 4oodfa | fc
4004ed: 55 push %rbp 4004f9 | 45
40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
m) 4004f8: 83 45 fc o1 addl $0x1,-0x4(%rbp) 10046 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004F5 | 00
4004f4 00
400413 fc
400412 45
This assembly represents an 10041 | c7
infinite loop in C!
, Ox4004fc
while (true) {..} rooned e

%Pip 33

The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
jmp 40418 <loop+0xb>

The destination can also be one of the usual operand forms (indirect jump):
jmp *%rax

34

“Interfering” with %rip

1. How do we repeat instructions in a loop?
jmp [target]
A 1l-step unconditional jump (always

jump when we execute this instruction)

What if we want a conditional jump?

35

Lecture Plan

e Recap: Assembly So Far
* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

36

* In C, we have control flow statements like if, else, while, for, etc. to write
programs that are more expressive than just one instruction following another.

* This is conditional execution of statements: executing statements if one
condition is true, executing other statements if one condition is false, etc.

* How is this represented in assembly?

37

o In Assembly:
1 -F (X > y) { 1. Calculate the condition result

/ / a 2. Based on theresult,gotoaorb

} else {
// b

* In assembly, it takes more than one instruction to do these two steps.

* Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:
1. cmp S1, S2 // compare two values
2. je [target] or jne [target] or jl[target] or ... // conditionally jump

/ A A

“jlump if “jump if “jlump if
equal” not equa less than”

|II

39

Conditional Jumps

There are also variants of jmp that jump only if certain conditions are true
(“Conditional Jump”). The jump location for these must be hardcoded into the
instruction.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)
jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)
jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=) 40

Read cmp $1,52 as “compare S2 to S17:

// Jump if %edi > 2 // Jump 1f %edli == 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump 1if %edi != 3 // Jump 1f %edi <=1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

Wait a minute — how does the jump instruction know anything about the
compared values in the earlier instruction?

41

* The CPU has special registers called condition codes that are like “global
variables”. They automatically keep track of information about the most
recent arithmetic or logical operation.

* cmp compares via calculation (subtraction) and info is stored in the condition codes
* conditional jump instructions look at these condition codes to know whether to jump

* What exactly are the condition codes? How do they store this information?

42

Condition Codes

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Most common condition codes:

* CF: Carry flag. The most recent operation generated a carry out of the most
significant bit. Used to detect overflow for unsigned operations.

e ZF: Zero flag. The most recent operation yielded zero.
* SF: Sign flag. The most recent operation yielded a negative value.

* OF: Overflow flag. The most recent operation caused a two’s-complement
overflow-either negative or positive.

43

Setting Condition Codes

The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 - S1

Instruction Description

cmpb Compare byte

cmpw Compare word

cmpl Compare double word
cmpq Compare quad word

44

Read cmp S1,S2 as “compare S2 to S1”. It calculates S2 — S1 and updates the
condition codes with the result.

// Jump if %edi > 2 // Jump 1f %edli == 4
// calculates %edi - 2 // calculates %edi - 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump 1if %edi != 3 // Jump 1f %edi <=1
// calculates %edi - 3 // calculates %edi - 1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

45

* How to remember cmp/jmp

82 > S1 . §2 - S1 > 0
jg . ' .

46

Conditional Jumps

Conditional jumps can look at subsets of the condition codes in order to check
their condition of interest.

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (ZF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)
ja Label jnbe Above (unsigned >) (CF =0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF =1)

jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1) 47

Setting Condition Codes

The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1
testb Test byte
testw Test word
testl Test double word
testq Test quad word

Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

48

The test Instruction

« TEST S1, S2 isS2 & S1

test %edl, %»edi
jns

sedli & %edi 1s nonnegative
%edi 1s nonnegative

49

Condition Codes

* Previously-discussed arithmetic and logical instructions update these flags. lea
does not (it was intended only for address computations).

* Logical operations (xor, etc.) set carry and overflow flags to zero.

 Shift operations set the carry flag to the last bit shifted out and set the
overflow flag to zero.

* For more complicated reasons, inc and dec set the overflow and zero flags, but
leave the carry flag unchanged.

50

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1i store 0x10. Will we jump in the following cases? %edi

1. cmp $0x10,%edi
je 40056F
add $0x1,%edi

2. test $0x10,%edi
je 40056F G
add $0x1,%edi s

51

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1i store 0x10. Will we jump in the following cases? %edi

1. cmp $0x10,%edi _
je 40056F S2-S1==0, so jump

add $0x1,%edi

2. test $0x10,%edi
je 40056f S2 & S1 =0, so don’t jump
add $0x1,%edi

52

Lecture Plan

e Recap: Assembly So Far
* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

53

How can we use instructions like cmp and conditional jumps to implement if
statements in assembly?

54

Practice: Fill In The Blank

int if _then(int paraml) { ©000000000401126 <if_then>:

if (

) 1

}

return

401126:
401129:
40112b:
40112e:
40112f:
401132:

cmp $0x6, %edi

je 40112F
lea (%rdi,%rdi,1),%eax
retq

add $0x1, %edi
jmp 40112b

/_\\
)2
®)

6

55

Practice: Fill In The Blank

int if _then(int paraml) { ©000000000401126 <if_then>:

¥

if (paraml == 6) {
paraml++;
}

return paraml * 2;

401126:
401129:
40112b:
40112e:
40112f:
401132:

cmp $0x6, %edi

je 40112F
lea (%rdi,%rdi,1),%eax
retq

add $0x1, %edi
jmp 40112b

/_\\
)2
®)

6

56

Common If-Else Construction

If-Else In C

If-Else In Assembly pseudocode

long absdiff(long x, long y) { Check opposite of code condition

long result;

if (x < vy) {
result =y - X;
} else {

result = x - y;

}

return result;

Jump to else-body if test passes
If-body

Jump to past else-body

Else-body

Past else body

57

Practice: Fill in the Blank

If-Else In C

long absdiff(long x, long y) {
long result;

if () o

} else {

¥

return result;

401134
401137
40113a
40113c
40113f
401140
401143
401146

<+0>: mov %rsi,srax

<+3>: cmp %rsi,snrdi

<+6>: jge 0x401140 <absdiff+12>
<+8>: sub %rdi, %rax

<+11>: retq

<+12>: sub %rsi,%srdi

<+15>: mov %rdi, %rax

<+18>: retq

If-Else In Assembly pseudocode

Check opposite of code condition
Jump to else-body if test passes
If-body

Jump to past else-body
Else-body K
Past else body

~ .)
\) .,

6

58

Practice: Fill in the Blank

If-Else In C

long absdiff(long x, long y) {
long result;

if (X < Y){

result =y - x;
} else {

result = x - y .

¥

return result;

401134
401137
40113a
40113c
40113f
401140
401143
401146

<+0>: mov
<+3>: cmp
<+6>: jge
<+8>: sub
<+11>: retq
<+12>: sub
<+15>: mov
<+18>: retq

%rsi,srax
%rsi,%srdi
0x401140 <absdiff+12>
%rdi, %rax

%rsi,%srdi
%rdi, %rax

If-Else In Assembly pseudocode

Check opposite of code condition

Jump to else-body if test passes

If-body

Jump to past else-body

Else-body

Past else body

59

If-Else Construction Variations

C Code
int test(int arg) {
int ret;
if (arg > 3) {
ret = 10;
} else {
ret = 0;
}
ret++;

return ret;

Assembly

401134
401137
401139
40113e
401141
401142
401147

<+0>:
<+3>:
<+5>:

<+10>:
<+13>:
<+14>:
<+19>:

cmp
jle
mov
add
retq
mov

Jmp

$0x3, %edi
0x401142 <test+14>

$0xa, %eax
$0x1, %eax

$0x0, %eax
0x40113e <test+10>

60

Lecture Plan

e Recap: Assembly So Far
* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

61

Loops and Control Flow

void loop() { 0X000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63, %eax
i 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
i++; Ox0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

62

Loops and Control Flow

void loop() A 0X000000000040115Cc <+0>: mov $0x0, %eax
int i = 9: 0Xx0000000000401161 <+5>: cmp $0x63, %eax
. e 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
j_.|..|.; 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq
¥

Set %eax (i) to O.

63

Loops and Control Flow

void loop() { 0X000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63, %eax
— 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
i++; Ox0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax — 0x63.
This is 0 —99 =-99, so it sets
the Sign Flag to 1.

64

Loops and Control Flow

void loop() { 0X000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63, %eax
— 0x0000000000401164 <+8>: jg Ox40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
i++; Ox0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

jg means “jump if greater than”.
This jumps if %eax > 0x63. The
flags indicate this is false, so we do
not jump.

65

Loops and Control Flow

void loop() { 0X000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63, %eax
— 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
i++; 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

Add 1 to %eax (i).

66

Loops and Control Flow

void loop() { 0X000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63, %eax
L2 0x0000000000401164 <+8>: jg Ox40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
j_.|..|.; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

Jump to another instruction.

67

Loops and Control Flow

void loop() { 0X000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63, %eax
— 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
i++; Ox0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax — 0x63.
Thisis 1 —99 =-98, so it sets
the Sign Flag to 1.

68

Loops and Control Flow

void loop() { 0X000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63, %eax
— 0x0000000000401164 <+8>: jg Ox40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
i++; Ox0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

We continue in this pattern until

we make this conditional jump.
When will that be?

69

Loops and Control Flow

void loop() { 0X000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63, %eax
— 0x0000000000401164 <+8>: g Ox40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
i++; Ox0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

We will stop looping when this
comparison says that %eax > 0x63!

70

Loops and Control Flow

void loop() { 0X000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63, %eax
i 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
i++; Ox0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

Then, we return from the function.

/1

GCC Common While Loop Construction

C Assembly
while (test) { Check opposite of code condition
body Skip loop if test passes
} Body
Jump back to test

From Previous Slide:

0x0000000000401161 <+5>: cmp $0x63, %eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1, %eax
OXx0000000000401169 <+13>: jmp Ox401161 <loop+5>

72

GCC Other While Loop Construction

C Assembly
while (test) { Jump to check
body Body
} Check code condition
Jump to body if test passes

From Previous Slide:

OXx0000000000400575 <+5>: jmp Ox40057a <loop+10>
OXx0000000000400577 <+7>: add $0x1, %eax
OXx000000000040057a <+10>: cmp $0x63, %eax

Ox000000000040057d <+13>: jle Ox400577 <loop+7>

73

Lecture Plan

e Recap: Assembly So Far
* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

74

Common For Loop Construction

C For loop Assembly pseudocode
for (init; test; update) {) Tnit
body Check opposite of code condition
} Skip loop if test passes
Body
mmm) Update

Jump back to test

C Equivalent While Loop
init
while(test) { For loops and while loops are

bogyt treated (essentially) the same
} R when compiled down to assembly.

75

Back to Our First Assembly

int sum_array(int arr[], int nelems) { |1 \Which register is C code’s sum?
int sum = 0O; : . : 'e 39
for (int i = @; i < nelems; i++) { |2- Which registeris C code’s 1:

} sum += arr[i]; 3. Which assembly instruction is C
return sum: code’s sum += arr[i]?
} 4. What are the cmp and jge

instructions doing?
0000000000401136 <sum_array>: . . _

401136 <+0>: mov $0x0, %eax (jge: signed jump greater than/equal)
40113b <+5>: mov $0x0, %edx
401140 <+10>: cmp %esi,%neax
401142 <+12>: jge 0x40114f <sum_array+25>
401144 <+14>: movslqg %eax,%rcx
401147 <+17>: add (%rdi,%rcx,4),%edx
40114a <+20>: add $0x1, %eax
40114d <+23>: jmp 0x401140 <sum_array+10> Kv>
40114f <+25>: mov %edx, %eax -
401151 <+27>: retq 76

Demo: GDB and Assembly

gdb tips). 0.0

(ctrl-x a: exit,

layout split (ir1-1: resize) View C, assembly, and gdb (lab5)

info reg Print all registers

p $eax Print register value

p $eflags Print all condition codes currently set

b *0x400546 Set breakpoint at assembly instruction
b *0x400550 if $eax > 98 Set conditional breakpoint

ni Next assembly instruction

si Step into assembly instruction (will step

into function calls) 78

gdb tips). 0.8

p/X $rdi
p/t $rsi

X $rdi
x/4bx $rdi
X/4wx $rdi

Print register value in hex
Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

79

Lecture Plan

e Recap: Assembly So Far
* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

* Other Instructions That Depend On Condition Codes

80

Condition Code-Dependent Instructions

There are three common instruction types that use condition codes:

* jmp instructions conditionally jump to a different next instruction
* set instructions conditionally set a bytetoOor 1

* new versions of mov instructions conditionally move data

81

set: Read condition codes

set instructions conditionally set a byte to O or 1.

e Reads current state of flags

* Destination is a single-byte register (e.g., %al) or single-byte memory location
* Does not perturb other bytes of register

* Typically followed by movzbl to zero those bytes

cmp $0xf,%edi
setle %al

movzbl %al, %eax
retg

int small(int x) {
return x < 16;

}

82

set: Read condition codes

Instruction Synonym Set Condition (1 if true, O if false)
sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)
setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)
seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)
setb D sethae Below (unsigned <)

setbe D setha Below or equal (unsigned <=)

83

cmov: Conditional move

cmovx src,dst conditionally moves data in src to data in dst.

* Mov src to dst if condition x holds; no change otherwise

* src is memory address/register, dst is register

* May be more efficient than branch (i.e., jump)

e Often seen with C ternary operator: result = test ? then: else;

. . . cm %edi,sesi
int max(int x, int y) { mos Vedi, %eax
o] k) o

return x > P X Y .
y Y cmovge %esi, %eax

) retg

84

Instruction

Synonym

cmov: Conditional move

Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovhe S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF=1)

cmovnhs S,R Nonnegative (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)
cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF=1 or ZF = 1)

85

Last Lab: Conditional Move

int signed division(int x) {

return x / 4;

signed division:
leal 3(%rdi), %eax
testl %edl, %»edi
cmovns %»edl, %eax
sarl $2, %eax
ret

Put x + 3 into %eax
Check the sign of x

If X is positive, put x into %eax
Divide %eax by 4

86

Optimizations

* Conditional Moves can sometimes eliminate “branches” (jumps), which are
particularly inefficient on modern computer hardware.

* Processors try to predict the future execution of instructions for maximum
performance. This is difficult to do with jumps.

* This is called branch prediction / speculative execution

* The Spectre vulnerability exploited an issue with this on modern processors to
access protected information

* Processors may also use out-of-order execution (look ahead)

* The Meltdown vulnerability exploited an issue with out-of-order execution on
modern processors to access protected data

* https://meltdownattack.com

87

https://meltdownattack.com/

Recap

* Recap: Assembly So Far Lecture 12 takeaway: We represent
* Assembly Execution and %rip | control flow in assembly by storing
e Control Flow Mechanics information in condition codes and having
. Condition Codes instructions that act differently depending
« Assembly Instructions on the condition code values. Loops and
conditionals commonly use cmp or test
along with jJumps to conditionally skip over
or repeat assembly instructions.

e If statements

* Loops
* While loops
* For loops

e Other Instructions That Depend On Condition Codes

Next time: Function calls in assembly 88

Practice: Fill in the blanks

long loop(long a, long b) {

long result = (1) ;
while (_ (2)) {
result = (3) ;
a=_ (4)__;
}
return result;
}
GCC common while loop construction:
Test
Jump past loop if fails
Body

Jump to test

<+0>:
<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:
<+24>:

mov $0x1, %eax
cmp %rsi,%rdi

jge Ox1151 <loop+24>
lea (%rdi,%rsi,1),%rdx
imul %rdx, %rax

add $0x1,%rdi

jmp Ox113e <loop+5>
retq

https://godbolt.org/z/zr'We6cb5MGa

&

89

https://godbolt.org/z/zrW6c5MGa

Practice: Fill in the blanks

long loop(long a, long b) {

long result = (1) ;
while (_ (2)) {
result = (3) ;
a=_ (4)__;
}
return result;
}
GCC common while loop construction:
Test
Jump past loop if fails
Body

Jump to test

<+0>:
<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:
<+24>:

mov
cmp
jge
lea
imul
add
Jjmp
retq

$0x1, %eax
%rsi,%xrdi

0x1151 <loop+24>
(%rdi,%rsi,1),%rdx
%rdx, %rax
$0x1,%rdi

Ox113e <loop+5>

90

Practice: Fill in the blanks

long loop(long a, long b) { <+0>: mov $0x1,%eax
long result = ;
while () { <+5>: cmp %rsi,nrdi
result = ; <+8>: jge ©x1151 <loop+24>
a = : <+10>: lea (%rdi,%rsi,1),%rdx
} <+14>: 1imul 7%rdx,%rax
\ return result; <+18>: add $0x1,%rdi

<+22>: jmp Ox113e <loop+5>

<+24>: retq

91

Practice: Fill in the blanks

long loop(long a, long b) { <+0>: mov $0x1,%eax
long result = 1 ;
while ((a <b) { <+5>: cmp %rsi,nrdi
result = result*(a+b) ; <+8>: jge 0x1151 <loop+24>
a=_2a+l ; <+10>: lea (%rdi,%rsi,1),%rdx
} <+14>: 1imul 7%rdx,%rax
return result; <+18>: add $0x1,%rdi

<+22>: jmp Ox113e <loop+5>

<+24>: retq

92

test practice: What's the C code?

0x400546 <test func> test %edi,%edil

0x400548 <test func+2> jns 0x400550 <test func+10>
Ox40054a <test func+4> mov $0xfeed, %eax

Ox40054f <test func+9> retg

Ox400550 <test func+10> mov $0xaabbccdd, %eax
Ox400555 <test func+15> retg

93

test practice: What's the C code?

0x400546 <test func> test %edi,%edil

0x400548 <test func+2> jns 0x400550 <test func+10>
Ox40054a <test func+4> mov $0xfeed, %eax

Ox40054f <test func+9> retg

Ox400550 <test func+10> mov $0xaabbccdd, %eax
Ox400555 <test func+15> retg

int test func(int x) {
if (x < 90) {
return Oxfeed;
}

return Oxaabbccdd; (or anything
} like this)

94

Practice: "Escape Room”

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5 , %eax
<escape_room+6> jg Ox114c <escape room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je Ox1152 <escape room+25>
<escape room+13> mov $0x0, %eax
<escape_room+18> retqg

<escape room+19> mov $0x1, %eax
<escape_room+24> retqg

<escape_ room+25> mov $0x1, %eax
<escape_room+30> retqg

What must be passed to the You don’t have to reverse-engineer C

escapeRoom function such that it | | code exactly!
returns true (1) and not false (0)? | |Just figure out the big picture!

95

Practice: "Escape Room”

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5 , %eax
<escape_room+6> jg Ox114c <escape room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je Ox1152 <escape room+25>
<escape room+13> mov $0x0, %eax
<escape_room+18> retqg

<escape room+19> mov $0x1, %eax
<escape_room+24> retqg

<escape_ room+25> mov $0x1, %eax
<escape_room+30> retqg

What must be passed to the
escapeRoom function such that it First param > 2 or == 1.
returns true (1) and not false (0)?

96

Exercise 2: Conditional jump

00000000004004d6 <if then>:

4004d6: 83 ff 06 cmp $0x6,%edi oed! %>
4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 01 add $0x1, %edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004el: c3 retq
1. What is the value of %rip after 2. What is the value of %eax
executing the jne instruction? when we hit the retq instruction?
A. 4004d9 A. 4004el
5. 4004db B. 0Ox2
C. 4004ae C. Oxa —~
D. Other D. OXxc N4
E. Other :

97

Exercise 2: Conditional jump

00000000004004d6 <if then>:

4004d6: 83 ff @6 cmp $0x6,%edi hed S8
4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 01 add $0x1, %edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004el: c3 retq
1. What is the value of %rip after 2. What is the value of %eax
executing the jne instruction? when we hit the retq instruction?
A. 4004d9 A. 4004el
5. 4004db B. Ox2
D. Other D. OXc

E. Other

98

