CS107, Lecture 14

Reverse Engineering, Privacy and Trust

This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, and others.

CS107 Topic 5: How does a
computer interpret and
execute C programs?

CS107 Topic 5

How does a computer interpret and execute C programs?

Why is answering this question important?

* Learning how our code is really translated and executed helps us write better
code

* We can learn how to reverse engineer and exploit programs at the assembly
level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

Learning Assembly

Arithmetic and - R_eversg
logical Control flow Function calls NEINEEring,
operations Privacy and
Trust / assign5
Lecture 10 Lecture 11 Lecture 12 Lecture 13 This
Lecture

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 4

Learning Goals

* Learn how to approach reverse engineering executables
e Understand the requirements and tasks for assign5
* Learn about the connections between privacy, security and trust

Lecture Plan

* Recap: Function Calls in Assembly

* Privacy and Trust

* Assignment 5 Overview

* Practice: Minivault

cp -r /afs/ir/class/csl107/lecture-code/lectlsd .

Lecture Plan

* Recap: Function Calls in Assembly

* Privacy and Trust

* Assignment 5 Overview

* Practice: Minivault

cp -r /afs/ir/class/csl107/lecture-code/lectlsd .

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Pass Control — %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards.

* Pass Data — we must pass any parameters and receive any return value.

* Manage Memory — we must handle any space needs of the callee on the
stack.

Terminology: caller function calls the callee function.

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

%rsp

—

Main Memory

main()

myfunction()

Heap
e —

Data

Text (code)

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away
when a function finishes.

func:
subg $8, %rsp
movl $10, %edx

movl $0, %esi Key idea: %rsp must
call strtol point to the same place
addq $8, %rsp before a function is

ret called and after that
function returns, since
stack frames go away
when a function finishes.

10

What does call do?

call pushes the next instruction address
onto the stack and points %rip to another
function’s instructions.

What does ret do?

ret pops off the 8 bytes from the top of
the stack and puts it into %rip, thus
resuming execution in the caller.

ret is separate from the return value of the function (put in %rax).

Parameters and Return

* There are special registers that store parameters and the return value.

* To call a function, we must put any parameters we are passing into the correct
registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)

* Parameters beyond the first 6 are put on the stack.
* If the caller expects a return value, it looks in %rax after the callee completes.

13

Local Storage

 So far, we've often seen local variables stored directly in registers, rather than
on the stack as we’d expect. This is for optimization reasons.

* There are three common reasons that local data must be in memory:
* We've run out of registers
* The ‘& operator is used on it, so we must generate an address for it
e They are arrays or structs (need to use address arithmetic)

14

Register Restrictions

There is only one copy of registers for all programs and functions.

* Problem: what if funcA is building up a value in register %r10, and calls funcB
in the middle, which also has instructions that modify %r10? funcA’s value will
be overwritten!

e Solution: make some “rules of the road” that callers and callees must follow
when using registers so they do not interfere with one another.

* These rules define two types of registers: caller-owned and callee-owned

15

Caller/Callee

Caller/callee is
terminology that
refers to a pair of
functions. A single
function may be
both a caller and functionl
callee
simultaneously (e.g.
functionl at right).

main is the caller,
and functionl is
the callee.

functionl is

: the caller, and
function2 function2 is

the callee.

16

Register Restrictions

Caller-Owned Callee-Owned

e Callee must save the existing value * Callee does not need to save the
and restore it when done. existing value.

 Caller can store values and assume Caller’s values could be overwritten
they will be preserved across by a callee! The caller may consider
function calls. saving values elsewhere before

calling functions.

17

Caller-Owned Registers

main can use caller-owned
registers and know that
functionl will not permanently

modify their values.

If function1 wants to use any
caller-owned registers, it must
save the existing values and
restore them before returning.

18

Caller-Owned Registers

functionl:
push %rbp
push 7%rbx
pop %rbx
pop %rbp
retq

19

Callee-Owned Registers

main can use callee-owned
registers but calling functionl
may permanently modify their
values.

If function1 wants to use any
callee-owned registers, it can do
so without saving the existing
values.

20

Callee-Owned Registers

main:

push %rile

push %rll

callg functionl
pop %rll

pop %rlo

21

A Day In the Life of functionl

functionl

function?2

Caller-owned registers:

 functionl must save/restore existing values
of any it wants to use.

 functionl can assume that calling
function2 will not permanently change their
values.

Callee-owned registers:

« functionl does not need to save/restore
existing values of any it wants to use.

« calling function2 may permanently change
their values.

P2

Lecture Plan

* Recap: Function Calls in Assembly

* Privacy and Trust

* Assignment 5 Overview

* Practice: Minivault

cp -r /afs/ir/class/csl107/lecture-code/lectlsd .

23

Privacy and Trust

How does a computer interpret and execute C programs?

Why is answering this question important?

* Learning how our code is really translated and executed helps us write better
code

 We can learn how to reverse engineer and exploit programs at the assembly
level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

24

Privacy and Trust

* Our learning about assembly and program execution helps us better
understand computer security.

 Computer security (the protection of data, devices, and networks from
disruption, harm, theft, unauthorized access or modification) is important in
part because it enables privacy.

* In understanding computer security, it’s essential to understand the context in
which it comes up (privacy and trust).

25

Have you been affected by a
data breach/hack or other
Improper access of your
data?

How did that make you feel?

What is privacy? 4 possible framings:

* Privacy as control of information — controlling how our private information is
shared with others.

* Privacy as autonomy — capacity to choose/decide for ourselves what is
valuable.

* Privacy as social good — social life would be unlivable without privacy.
* Privacy (protection) as based in trust — privacy enables trusting relationships

First two are individualist —the value of privacy as an individual right.
Second two are social — the value of privacy for a group.

27

Privacy as control of information — controlling how our
information is communicated to others.

* Consent requires free choice with available alternatives and informed
understanding of what is being offered.

* How many of you just skip past the terms of service for new online services
you sign up for?

* Control over personal data being collected (e.g. data exports from services you
use, privacy dashboards, device privacy protections)

28

Privacy as autonomy — capacity to choose/decide for
ourselves what is valuable.

* Links to autonomy over our own lives and our ability to lead them as we
choose.

* Do you feel that your autonomy is always respected when using products and
services? Why or why not?

“[P]rivacy is valuable because it acknowledges our respect for persons as
autonomous beings with the capacity to love, care and like—in other words,

persons with the potential to freely develop close relationships” (Innes 1992)
29

Individualist Models of Privacy

Privacy as autonomy and privacy as control over information
focus the value of privacy at an individual level.

* Individual privacy can conflict with interests of society or the state.

* Many debates over "privacy vs. security” — whether one should be sacrificed
for the other

* Apple v. FBI case re: unlocking iPhones (link)
* Debates around encryption (link)

30

https://www.cnbc.com/2016/03/29/apple-vs-fbi-all-you-need-to-know.html
https://www.nytimes.com/2019/11/19/technology/end-to-end-encryption.html

Privacy as social good — social life would be unlivable without
privacy.

* Privacy has a social value in bringing about the kind of society we want to live
In.

 What would society look like without privacy?

31

Privacy (protection) as based in trust — privacy enables
trusting relationships

* Privacy may help enable trusting relationships essential for cooperation. For
instance, a fiduciary: someone who stands in a legal or ethical relationship of
trust with another person (or group). The fiduciary must act for the benefit of
and in the best interest of the other person.

e E.g. tax filer with access to your bank account

* Should anyone who has access to personal info have a fiduciary responsibility? (Richards
& Hartzog 2020).

* This model of privacy stresses the essential relationship of trust placed in any

holder of personal data and the responsibilities that result from this trust. .

Models of Privacy

Individualist
Models

Social Models
of Privacy

Privacy as Privacy as a
Control over Social Good
Information

Privacy as
Respect for
Autonomy

Privacy as based on
Trust

33

Loss of Privacy

Loss of privacy can cause us various harms, including:

* Aggregation: combining personal information from various sources to build a
profile of someone

e Exclusion: not knowing how our information is being used, or being unable to
access or modify it (Google removing personal info from search — link)

* Secondary Use: using your information for purposes other than what was
intended without permission.

34

https://mashable.com/article/how-to-remove-personal-info-from-google-search-results

Who Should We Trust?

Both security and privacy rely on trusted people (who administer security,
perform penetration tests, submit vulnerabilities to databases, or keep private
information secret). The final piece of the security puzzle is understanding trust.

Trust = Reliance + Risk of Betrayal

What makes trust unique to relationships between people is that trust exposes
one to being betrayed or being let down (Baier 1986).

35

Penetration Testing & Trust

Penetration testing is the practice of encouraging or hiring security researchers
to find vulnerabilities in one’s own code or system.

The tester is placed in a position of trust: they are given access to the system
itself and encouraged to find exploitable vulnerabilities, with the expectation
that the tester will share what they have found with you.

Hiring a penetration tester means relying on their skill at finding vulnerabilities

and also trusting that their ethical compass will lead them to tell you and to act
as a trustworthy fiduciary (guardian of your interests). In Assignment5, you will
have the opportunity to test your own ethical compass!

36

Example: Differential Privacy

Imagine a large database, perhaps a medical database, with personal
information and records of past activity tied to a name.

The records might be useful for research purposes, or to train a machine
learning model to predict future health outcomes, but what if giving access to

the records exposed the privacy of individual person’s health records?

Differential privacy is a formal measure of privacy that attempts to address
these concerns. By adding inconsequential noise (changing a birthday from 2001
to 2002, for example) or removing records, differential privacy protects
individuals from aggregation by making them harder to identify (Dwork 2008).

37

Differential Privacy’s Trust Model

Differential privacy assumes that the only threat to privacy is an external user

querying the database who must be prevented from aggregating data that could
identify a user.

In other words, the trust model of differential privacy is that the database
owners and maintainers are to be fully trusted, and no one else.

38

Differential Privacy: The Other Threats

But is that the only threat? Differential privacy does not protect against
improper use by people with full access to data or against leaks of the whole
database, which may be the primary data exposure risks.

Differential privacy also does not question the assumption that amassing &
storing large amounts of personal data is worth the risk of inevitable leaks
(Rogaway 2015).

In every evaluation of privacy, we can ask: who is trusted? Who is distrusted?
Does this model concentrate trust (and therefore power) in a single individual or
small group, or does it distribute trust?

39

Lecture Plan

* Recap: Function Calls in Assembly

* Privacy and Trust

* Assignment 5 Overview

* Practice: Minivault

cp -r /afs/ir/class/csl107/lecture-code/lectlsd .

40

You are a security researcher hired to explore potential vulnerabilities and issues
at Stanford Bank. 3 core parts:

1. Uncovering ATM software vulnerabilities

Demonstrating how a data leak can lead to data aggregation and
uncovering of personal information

3. Reverse engineering a secure program

41

Lecture Plan

* Recap: Function Calls in Assembly
* Privacy and Trust
* Assignment 5 Overview

* Practice: Minivault

cp -r /afs/ir/class/csl107/lecture-code/lectlsd .

42

Optimizations you’ll see

nop
* nop/nopl are “no-op” instructions — they do nothing!
* Intent: Make functions align on address boundaries that are nice multiples of 8.

* “Sometimes, doing nothing is how to be most productive” — Philosopher Nick

mov %ebx, %ebx

» Zeros out the top 32 register bits (because a mov on an e-register zeros out rest
of 64 bits).

xor %ebx,%ebx

* Optimizes for performance as well as code size (read more here):

b8 00 00 00O 00 mov $0x0,%eax
31 co Xor %eax, seax 43

https://stackoverflow.com/questions/33666617/what-is-the-best-way-to-set-a-register-to-zero-in-x86-assembly-xor-mov-or-and/33668295

Funky Assembly you’ll see

Some functions like printf take variable numbers of arguments.

* It turns out that in assembly when we call these functions, we must indicate
the presence of any float/double arguments by setting %rax to the count of
vector registers used. If none are used (i.e., no parameters of float/double
type), it sets %rax to zero.

44

Recap

* Recap: Function Calls in Assembly

* Privacy and Trust

* Assignment 5 Overview

* Practice: Minivault

cp -r /afs/ir/class/csl107/lecture-code/lectlsd .

45

Extra Practice

Extra Practice — Escape
Room 2

https://godbolt.org/z/8e31fG4r5

escape_room

Escape room assembly code

000000V 115b <escape room>:

115b: 48 83 ec 08 sub $0x8,%rsp

115f: ba ©a 00 00 00 mov $0xa, %edx

1164: be 00 00 00 00 mov $0x0, %esi

1169: e8 d2 fe ff ff callg 1040 <strtol@plt>
116e: 48 89 c7 mov %rax,srdi

1171: e8 d3 ff ff ff callg 1149 <transform>
1176: a8 01 test $0x1,%al

1178: 74 0@a je 1184 <escape room+0x29>
117a: b8 00 00 00 00 mov $0x0, %eax

117f: 48 83 c4 08 add $0x8,%rsp

1183: «¢3 retq

1184: b8 01 00 00 00 mov $0x1, %eax

1189: eb f4 jmp 117f <escape room+0x24>

48

Escape room assembly code

000001149 <transform>:
1149: 8d 94 bd 00 00 00 PO lea ox0(,%rdi,4),%eax

1150: 8d 50 01 lea ox1(%rax) ,%edx

1153: 83 fa 32 cmp $0x32, %edx

1156: 71 02 jg 115a <transform+0x11>
1158: 89 do mov %edx, %eax

115a: «c3 retq

49

