
1
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 14
Reverse Engineering, Privacy and Trust

2

CS107 Topic 5: How does a
computer interpret and
execute C programs?

3

CS107 Topic 5
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better

code
• We can learn how to reverse engineer and exploit programs at the assembly

level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

4

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

Reverse
Engineering,
Privacy and

Trust / assign5

Lecture 10

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

Lecture 11 Lecture 12 Lecture 13 This
Lecture

5

Learning Goals
• Learn how to approach reverse engineering executables
• Understand the requirements and tasks for assign5
• Learn about the connections between privacy, security and trust

6

Lecture Plan
• Recap: Function Calls in Assembly
• Privacy and Trust
• Assignment 5 Overview
• Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect14 .

7

Lecture Plan
• Recap: Function Calls in Assembly
• Privacy and Trust
• Assignment 5 Overview
• Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect14 .

8

Calling Functions In Assembly
To call a function in assembly, we must do a few things:
• Pass Control – %rip must be adjusted to execute the callee’s instructions, and

then resume the caller’s instructions afterwards.
• Pass Data – we must pass any parameters and receive any return value.
• Manage Memory – we must handle any space needs of the callee on the

stack.

Terminology: caller function calls the callee function.

9

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

myfunction()

Data

Text (code)

%rsp

Main Memory

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away
when a function finishes.

10

%rsp
func:
subq $8, %rsp
movl $10, %edx
movl $0, %esi
call strtol
addq $8, %rsp
ret

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away
when a function finishes.

11

Registers

What does call do?

call pushes the next instruction address
onto the stack and points %rip to another

function’s instructions.

12

Registers

What does ret do?

ret pops off the 8 bytes from the top of
the stack and puts it into %rip, thus

resuming execution in the caller.
ret is separate from the return value of the function (put in %rax).

13

Parameters and Return
• There are special registers that store parameters and the return value.
• To call a function, we must put any parameters we are passing into the correct

registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)
• Parameters beyond the first 6 are put on the stack.
• If the caller expects a return value, it looks in %rax after the callee completes.

14

Local Storage
• So far, we’ve often seen local variables stored directly in registers, rather than

on the stack as we’d expect. This is for optimization reasons.
• There are three common reasons that local data must be in memory:

• We’ve run out of registers
• The ‘&’ operator is used on it, so we must generate an address for it
• They are arrays or structs (need to use address arithmetic)

15

Register Restrictions
There is only one copy of registers for all programs and functions.
• Problem: what if funcA is building up a value in register %r10, and calls funcB

in the middle, which also has instructions that modify %r10? funcA’s value will
be overwritten!

• Solution: make some “rules of the road” that callers and callees must follow
when using registers so they do not interfere with one another.

• These rules define two types of registers: caller-owned and callee-owned

16

Caller/Callee

main

function1

function2

Caller/callee is
terminology that
refers to a pair of
functions. A single
function may be
both a caller and
callee
simultaneously (e.g.
function1 at right).

calls

calls

main is the caller,
and function1 is
the callee.

function1 is
the caller, and
function2 is
the callee.

17

Register Restrictions

• Callee must save the existing value
and restore it when done.

• Caller can store values and assume
they will be preserved across
function calls.

• Callee does not need to save the
existing value.

• Caller’s values could be overwritten
by a callee! The caller may consider
saving values elsewhere before
calling functions.

Caller-Owned Callee-Owned

18

Caller-Owned Registers

main

function1

calls

main can use caller-owned
registers and know that
function1 will not permanently
modify their values.

If function1 wants to use any
caller-owned registers, it must
save the existing values and
restore them before returning.

19

Caller-Owned Registers

function1:
push %rbp
push %rbx
...
pop %rbx
pop %rbp
retq

main

function1

calls

20

Callee-Owned Registers

main can use callee-owned
registers but calling function1
may permanently modify their
values.

If function1 wants to use any
callee-owned registers, it can do
so without saving the existing
values.

main

function1

calls

21

Callee-Owned Registers

main

function1

calls

main:
...
push %r10
push %r11
callq function1
pop %r11
pop %r10
...

22

A Day In the Life of function1

main

function1

function2

calls

calls

Caller-owned registers:
• function1 must save/restore existing values

of any it wants to use.
• function1 can assume that calling

function2 will not permanently change their
values.

Callee-owned registers:
• function1 does not need to save/restore

existing values of any it wants to use.
• calling function2 may permanently change

their values.

23

Lecture Plan
• Recap: Function Calls in Assembly
• Privacy and Trust
• Assignment 5 Overview
• Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect14 .

24

Privacy and Trust
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better

code
• We can learn how to reverse engineer and exploit programs at the assembly

level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

25

Privacy and Trust
• Our learning about assembly and program execution helps us better

understand computer security.
• Computer security (the protection of data, devices, and networks from

disruption, harm, theft, unauthorized access or modification) is important in
part because it enables privacy.

• In understanding computer security, it’s essential to understand the context in
which it comes up (privacy and trust).

26

Have you been affected by a
data breach/hack or other

improper access of your
data?

How did that make you feel?

27

Privacy
What is privacy? 4 possible framings:
• Privacy as control of information – controlling how our private information is

shared with others.
• Privacy as autonomy – capacity to choose/decide for ourselves what is

valuable.
• Privacy as social good – social life would be unlivable without privacy.
• Privacy (protection) as based in trust – privacy enables trusting relationships

First two are individualist –the value of privacy as an individual right.
Second two are social – the value of privacy for a group.

28

Privacy
Privacy as control of information – controlling how our
information is communicated to others.

• Consent requires free choice with available alternatives and informed
understanding of what is being offered.

• How many of you just skip past the terms of service for new online services
you sign up for?

• Control over personal data being collected (e.g. data exports from services you
use, privacy dashboards, device privacy protections)

29

Privacy
Privacy as autonomy – capacity to choose/decide for
ourselves what is valuable.

• Links to autonomy over our own lives and our ability to lead them as we
choose.

• Do you feel that your autonomy is always respected when using products and
services? Why or why not?

“[P]rivacy is valuable because it acknowledges our respect for persons as
autonomous beings with the capacity to love, care and like—in other words,
persons with the potential to freely develop close relationships” (Innes 1992)

30

Individualist Models of Privacy
Privacy as autonomy and privacy as control over information
focus the value of privacy at an individual level.

• Individual privacy can conflict with interests of society or the state.
• Many debates over ”privacy vs. security” – whether one should be sacrificed

for the other
• Apple v. FBI case re: unlocking iPhones (link)
• Debates around encryption (link)

https://www.cnbc.com/2016/03/29/apple-vs-fbi-all-you-need-to-know.html
https://www.nytimes.com/2019/11/19/technology/end-to-end-encryption.html

31

Privacy
Privacy as social good – social life would be unlivable without
privacy.

• Privacy has a social value in bringing about the kind of society we want to live
in.

• What would society look like without privacy?

32

Privacy
Privacy (protection) as based in trust – privacy enables
trusting relationships

• Privacy may help enable trusting relationships essential for cooperation. For
instance, a fiduciary: someone who stands in a legal or ethical relationship of
trust with another person (or group). The fiduciary must act for the benefit of
and in the best interest of the other person.

• E.g. tax filer with access to your bank account
• Should anyone who has access to personal info have a fiduciary responsibility? (Richards

& Hartzog 2020).

• This model of privacy stresses the essential relationship of trust placed in any
holder of personal data and the responsibilities that result from this trust.

33

Models of Privacy
Individualist
Models

Social Models
of Privacy

Privacy as
Control over
Information

Privacy as
Respect for
Autonomy

Privacy as a
Social Good

Privacy as based on
Trust

34

Loss of Privacy
Loss of privacy can cause us various harms, including:
• Aggregation: combining personal information from various sources to build a

profile of someone
• Exclusion: not knowing how our information is being used, or being unable to

access or modify it (Google removing personal info from search – link)
• Secondary Use: using your information for purposes other than what was

intended without permission.

https://mashable.com/article/how-to-remove-personal-info-from-google-search-results

35

Who Should We Trust?
Both security and privacy rely on trusted people (who administer security,
perform penetration tests, submit vulnerabilities to databases, or keep private
information secret). The final piece of the security puzzle is understanding trust.

Trust = Reliance + Risk of Betrayal

What makes trust unique to relationships between people is that trust exposes
one to being betrayed or being let down (Baier 1986).

36

Penetration Testing & Trust
Penetration testing is the practice of encouraging or hiring security researchers
to find vulnerabilities in one’s own code or system.

The tester is placed in a position of trust: they are given access to the system
itself and encouraged to find exploitable vulnerabilities, with the expectation
that the tester will share what they have found with you.

Hiring a penetration tester means relying on their skill at finding vulnerabilities
and also trusting that their ethical compass will lead them to tell you and to act
as a trustworthy fiduciary (guardian of your interests). In Assignment5, you will
have the opportunity to test your own ethical compass!

37

Example: Differential Privacy
Imagine a large database, perhaps a medical database, with personal
information and records of past activity tied to a name.

The records might be useful for research purposes, or to train a machine
learning model to predict future health outcomes, but what if giving access to
the records exposed the privacy of individual person’s health records?

Differential privacy is a formal measure of privacy that attempts to address
these concerns. By adding inconsequential noise (changing a birthday from 2001
to 2002, for example) or removing records, differential privacy protects
individuals from aggregation by making them harder to identify (Dwork 2008).

38

Differential Privacy’s Trust Model
Differential privacy assumes that the only threat to privacy is an external user
querying the database who must be prevented from aggregating data that could
identify a user.

In other words, the trust model of differential privacy is that the database
owners and maintainers are to be fully trusted, and no one else.

39

Differential Privacy: The Other Threats
But is that the only threat? Differential privacy does not protect against
improper use by people with full access to data or against leaks of the whole
database, which may be the primary data exposure risks.

Differential privacy also does not question the assumption that amassing &
storing large amounts of personal data is worth the risk of inevitable leaks
(Rogaway 2015).

In every evaluation of privacy, we can ask: who is trusted? Who is distrusted?
Does this model concentrate trust (and therefore power) in a single individual or
small group, or does it distribute trust?

40

Lecture Plan
• Recap: Function Calls in Assembly
• Privacy and Trust
• Assignment 5 Overview
• Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect14 .

41

assign5
You are a security researcher hired to explore potential vulnerabilities and issues
at Stanford Bank. 3 core parts:

1. Uncovering ATM software vulnerabilities
2. Demonstrating how a data leak can lead to data aggregation and

uncovering of personal information
3. Reverse engineering a secure program

42

Lecture Plan
• Recap: Function Calls in Assembly
• Privacy and Trust
• Assignment 5 Overview
• Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect14 .

43

Optimizations you’ll see
nop
• nop/nopl are “no-op” instructions – they do nothing!
• Intent: Make functions align on address boundaries that are nice multiples of 8.
• “Sometimes, doing nothing is how to be most productive” – Philosopher Nick

mov %ebx,%ebx
• Zeros out the top 32 register bits (because a mov on an e-register zeros out rest

of 64 bits).

xor %ebx,%ebx
• Optimizes for performance as well as code size (read more here):

b8 00 00 00 00 mov $0x0,%eax
31 c0 xor %eax,%eax

https://stackoverflow.com/questions/33666617/what-is-the-best-way-to-set-a-register-to-zero-in-x86-assembly-xor-mov-or-and/33668295

44

Funky Assembly you’ll see
Some functions like printf take variable numbers of arguments.
• It turns out that in assembly when we call these functions, we must indicate

the presence of any float/double arguments by setting %rax to the count of
vector registers used. If none are used (i.e., no parameters of float/double
type), it sets %rax to zero.

45

Recap
• Recap: Function Calls in Assembly
• Privacy and Trust
• Assignment 5 Overview
• Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect14 .

46

Extra Practice

47

Extra Practice – Escape
Room 2

escape_room

https://godbolt.org/z/8e31fG4r5

48

Escape room assembly code
000000000000115b <escape_room>:

115b: 48 83 ec 08 sub $0x8,%rsp
115f: ba 0a 00 00 00 mov $0xa,%edx
1164: be 00 00 00 00 mov $0x0,%esi
1169: e8 d2 fe ff ff callq 1040 <strtol@plt>
116e: 48 89 c7 mov %rax,%rdi
1171: e8 d3 ff ff ff callq 1149 <transform>
1176: a8 01 test $0x1,%al
1178: 74 0a je 1184 <escape_room+0x29>
117a: b8 00 00 00 00 mov $0x0,%eax
117f: 48 83 c4 08 add $0x8,%rsp
1183: c3 retq
1184: b8 01 00 00 00 mov $0x1,%eax
1189: eb f4 jmp 117f <escape_room+0x24>

49

Escape room assembly code
0000000000001149 <transform>:

1149: 8d 04 bd 00 00 00 00 lea 0x0(,%rdi,4),%eax
1150: 8d 50 01 lea 0x1(%rax),%edx
1153: 83 fa 32 cmp $0x32,%edx
1156: 7f 02 jg 115a <transform+0x11>
1158: 89 d0 mov %edx,%eax
115a: c3 retq

