
1
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Lisa Yan, Jerry Cain and others.

CS107, Lecture 15
Managing The Heap

Reading: B&O 9.9, 9.11

2

CS107 Topic 6: How do the
core malloc/realloc/free

memory-allocation
operations work?

3

How do malloc/realloc/free work?
Pulling together all our CS107 topics this quarter:
• Testing
• Efficiency
• Bit-level manipulation
• Memory management
• Pointers
• Generics
• Assembly
• And more…

4

Learning Goals
• Learn the restrictions, goals and assumptions of a heap allocator
• Understand the conflicting goals of utilization and throughput
• Learn about different ways to implement a heap allocator

5

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

6

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

7

Running a program
• Creates new process
• Sets up address space/segments
• Read executable file, load instructions, global data

Mapped from file into gray segments
• Libraries loaded on demand

• Set up stack
Reserve stack segment, init %rsp, call main
• malloc written in C, will init self on use

Asks OS for large memory region,
parcels out to service requests

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

8

The Stack

Stack memory ”goes
away” after function
call ends.

Automatically managed
at compile-time by gcc

From Assembly:
Stack management ==
moving %rsp around
(pushq, popq, mov)

Review

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

9

Today: The Heap

Heap memory persists
until caller indicates it
no longer needs it.

Managed by C standard
library functions
(malloc, realloc, free)

This lecture:
How does heap
management work?

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

10

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

11

Your role so far: Client
void *malloc(size_t size);

Returns a pointer to a block of heap memory of at least size bytes, or
NULL if an error occurred.

void free(void *ptr);
Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size_t size);
Changes the size of the heap-allocated block starting at the specified
address to be the new specified size. Returns the address of the new,
larger allocated memory region.

12

Your role now: Heap Hotel Concierge

http://screencrave.com/wp-content/uploads/2014/03/the-grand-budapest-hotel-
anderson-image-2.jpg

(aka Heap Allocator)

13

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE

14

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 1: Hi! May I
please have 2 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE

15

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 AVAILABLE

Request 1: Hi! May I
please have 2 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x10.

16

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 2: Howdy! May I
please have 3 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x12.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 AVAILABLE

17

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 2: Howdy! May I
please have 3 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x12.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

18

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 1: I’m done with
the memory I requested.

Thank you!

Allocator: Thanks. Have a
good day!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

19

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 1: I’m done with
the memory I requested.

Thank you!

Allocator: Thanks. Have a
good day!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE

20

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hello there!
I’d like to request 2 bytes
of heap memory, please.

Allocator: Sure thing. I’ve
given you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE

21

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hello there!
I’d like to request 2 bytes
of heap memory, please.

Allocator: Sure thing. I’ve
given you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

22

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hi again! I’d
like to request the region

of memory at 0x10 be
reallocated to 4 bytes.

Allocator: Sure thing. I’ve
given you address 0x15.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

23

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hi again! I’d
like to request the region

of memory at 0x10 be
reallocated to 4 bytes.

Allocator: Sure thing. I’ve
given you address 0x15.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 FOR REQUEST 3 AVAILABLE

24

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

25

Heap Allocator Functions

void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

26

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay

27

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay

A heap allocator cannot assume anything about the order of allocation
and free requests, or even that every allocation request is accompanied
by a matching free request.

28

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay

A heap allocator marks memory regions as allocated or available. It
must remember which is which to properly provide memory to clients.

29

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay

A heap allocator may have options for which memory to use to fulfill an
allocation request. It must decide this based on a variety of factors.

30

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay

A heap allocator must respond immediately to allocation requests and
should not e.g. prioritize or reorder certain requests to improve
performance.

31

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

32

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

33

Utilization
• The primary cause of poor utilization is fragmentation. Fragmentation occurs

when otherwise unused memory is not available to satisfy allocation requests.
• In this example, there is enough aggregate free memory to satisfy the request,

but no single free block is large enough to handle the request.
• In general: we want the largest address used to be as low as possible.

Request 6: Hi! May I
please have 4 bytes of

heap memory?

Allocator: I’m sorry, I
don’t have a 4 byte block

available…

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

34

Utilization
Question: what if we shifted these blocks down to make more space? Can we
do this?

A. YES, great idea!
B. YES, it can be done, but not a good idea for some reason (e.g. not

efficient use of time)
C. NO, it can’t be done!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free

35

Utilization
Question: what if we shifted these blocks down to make more space? Can we
do this?
• No - we have already guaranteed these addresses to the client. We cannot

move allocated memory around, since this will mean the client will now have
incorrect pointers to their memory!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free

36

Fragmentation
• Internal Fragmentation: an allocated block is larger than what is needed (e.g.

due to minimum block size)
• External Fragmentation: no single block is large enough to satisfy an allocation

request, even though enough aggregate free memory is available

37

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

These are seemingly conflicting goals – for instance, it may take longer to better
plan out heap memory use for each request.

Heap allocators must find an appropriate balance between these two goals!

38

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

Other desirable goals:
Locality (“similar” blocks allocated close in space)

Robust (handle client errors)
Ease of implementation/maintenance

39

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

40

Bump Allocator
Let’s say we want to entirely prioritize throughput, and do not care about
utilization at all. This means we do not care about reusing memory. How could
we do this?

41

Bump Allocator Performance

1. Utilization

😱

Never reuses memory

2. Throughput

⭐

Ultra fast, short rougnes

42

Bump Allocator
• A bump allocator is a heap allocator design that simply allocates the next

available memory address upon an allocate request and does nothing on a free
request.
• Throughput: each malloc and free execute only a handful of instructions:

• It is easy to find the next location to use
• Free does nothing!

• Utilization: we use each memory block at most once. No freeing at all, so no
memory is ever reused. L
• We provide a bump allocator implementation as part of the final assignment

as a code reading exercise.

43

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

AVAILABLE

44

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a AVAILABLE

Variable Value

a 0x10

45

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding AVAILABLE

46

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

47

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

48

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

d NULL

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

49

Summary: Bump Allocator
• A bump allocator is an extreme heap allocator – it optimizes only for

throughput, not utilization.
• Better allocators strike a more reasonable balance. How can we do this?

Questions to consider:
1. How do we keep track of free blocks?
2. How do we choose an appropriate free block in which to place a newly

allocated block?
3. After we place a newly allocated block in some free block, what do we do

with the remainder of the free block?
4. What do we do with a block that has just been freed?

50

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

51

Implicit Free List Allocator
• Key idea: in order to reuse blocks, we need a way to track which blocks are

allocated and which are free.
• We could store this information in a separate global data structure, but this is

inefficient.
• Instead: let’s allocate extra space before each block for a header storing its

payload size and whether it is allocated or free.
• When we allocate a block, we look through the blocks to find a free one, and

we update its header to reflect its allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free.
• The header should be 8 bytes (or larger).
• By storing the block size of each block, we implicitly have a list of free blocks.

52

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

53

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

56
Free

Variable Value

a 0x18

54

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used b 40

Free

Variable Value

a 0x18

b 0x28

55

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used b 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

56

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Free b 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

57

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used d 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

58

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

59

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e

60

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e

61

Representing Headers
How can we store both a size and a status (Free/Allocated) in 8 bytes?

Int for size, int for status?

Key idea: block sizes will always be multiples of 8. (Why?)
• Least-significant 3 bits will be unused!
• Solution: use one of the 3 least-significant bits to store free/allocated status

no! malloc/realloc use size_t for sizes!

62

Implicit Free List Allocator
• How can we choose a free block to use for an allocation request?

• First fit: search the list from beginning each time and choose first free block that fits.
• Next fit: instead of starting at the beginning, continue where previous search left off.
• Best fit: examine every free block and choose the one with the smallest size that fits.

• First fit/next fit easier to implement
• What are the pros/cons of each approach?

63

Implicit Free List Summary
For all blocks,
• Have a header that

stores size and status.
• Our list links all blocks,

allocated (A) and free (F).

Keeping track of free blocks:
• Improves memory utilization (vs bump allocator)
• Decreases throughput (worst case allocation request has O(A + F) time)
• Increases design complexity J

Header (8B)

Block size 00X

alloc/free

0363

64

Implicit free list header design
Should we store the block size as
(A) payload size, or
(B) header + payload size?

Your decision affects how you
traverse the list (be careful of off-by-one)
Up to you!

Up to you!

65

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

Up to you!

66

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

16
Used e ???

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

Up to you!

67

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e + pad

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding? Internal fragmentation –
unused bytes because of padding

Up to you!

68

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

16
Used e 0

Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding?
B. Make a “zero-byte free block”? External fragmentation – unused free
blocks

Up to you!

69

Revisiting Our Goals
Questions we considered:
1. How do we keep track of free blocks? Using headers!
2. How do we choose an appropriate free block in which to place a newly

allocated block? Iterate through all blocks.
3. After we place a newly allocated block in some free block, what do we do

with the remainder of the free block? Try to make the most of it!
4. What do we do with a block that has just been freed? Update its header!

70

Practice 1: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *b = malloc(8);

🤔

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Free

16
Free

8
Used A

71

Practice 1: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *b = malloc(8);

🤔

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Free

16
Free

8
Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used B 8

Free
16

Free
8

Used A

72

Practice 2: Implicit (best-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

void *b = malloc(8);

🤔

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Free

8
Used A

73

Practice 2: Implicit (best-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

void *b = malloc(8);

🤔

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Free

8
Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Used B 8

Used A

74

Final Assignment: Implicit Allocator
• Must have headers that track block information (size, status in-use or free) –

you must use the 8 byte header size, storing the status using the free bits (this
is larger than the 4 byte headers specified in the book, as this makes it easier
to satisfy the alignment constraint and store information).
• Must have free blocks that are recycled and reused for subsequent malloc

requests if possible
• Must have a malloc implementation that searches the heap for free blocks via

an implicit list (i.e. traverses block-by-block).

• Does not need to have coalescing of free blocks
• Does not need to support in-place realloc

75

Coalescing
void *e = malloc(24); // returns NULL!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

8
Free

8
Free

24
Used

You do not need to worry about this
problem for the implicit allocator, but this
is a requirement for the explicit allocator!
(More about this later).

76

In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

77

In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

56
Free

Variable Value

a 0x18

78

In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used b 40

Free

Variable Value

a 0x10

b 0x28

The implicit allocator can always move memory to a new
location for a realloc request. The explicit allocator must
support in-place realloc (more on this later).

79

Summary: Implicit Allocator
An implicit allocator is a more efficient implementation that has reasonable
throughput and utilization due to its recycling of blocks.

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

80

Checkpoint Review
Heap allocator terminology: What do the below terms mean/imply?
• Payload, Header, Free/Used(Allocated) status
• Splitting policy
• Memory utilization vs Throughput
• Bump allocator, Implicit free list Allocator
• First-fit approach, Best-fit approach
• Coalescing
• Realloc in place
• Fragmentation

81

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

82

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

• Explicit Allocator
• Coalescing
• In-place realloc

83

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free

8
Used

56
Free

84

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8

Used 0x10 0x50 8
Free 0x10 null

85

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8

Used 0x10 0x50 8
Free 0x10 null

This is inefficient – it triples the size of every header,
when we just need to jump from one free block to
another. And even if we just made free headers bigger,
it’s complicated to have two different header sizes.

86

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

87

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?

88

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure? More difficult to access in a separate place

– prefer storing near blocks on the heap itself.

89

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free

24
Used

32
Free

90

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null

0x10
First free block

91

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!
• This means each payload must be big enough to store 2 pointers (16 bytes). So

we must require that for every block, free and allocated. (why?)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null

92

Explicit Free List Allocator
• This design builds on the implicit allocator, but also stores pointers to the next

and previous free block inside each free block’s payload.
• When we allocate a block, we look through just the free blocks using our linked

list to find a free one, and we update its header and the linked list to reflect its
allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free and

update the linked list.

This explicit list of free blocks increases
request throughput, with some costs
(design and internal fragmentation)

93

Explicit Free List: List Design
How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.)

Better memory util,
Linear free

Constant free (push
recent block onto stack)

(more at end of lecture)

Up to you!

94

How do you want to organize your explicit free list?(utilization/throughput)
A. Address-order

B. Last-in first-out (LIFO)

C. Other (e.g., by size, etc.)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68 0x70 0x78 0x80

16
Free 0x70 0x40 16

Used
16

Free 0x10 null 16
Used

16
Free null 0x10

Explicit free list design

Better memory util, linear free

Constant free (push recent block onto stack)

(see textbook)

Up to you!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null
0x10

First free
block

0x70

First free
block

95

Implicit vs. Explicit: So Far
Implicit Free List
• 8B header for size + alloc/free status

• Allocation requests are worst-case
linear in total number of blocks
• Implicitly address-order

Explicit Free List
• 8B header for size + alloc/free status
• Free block payloads store prev/next

free block pointers

• Allocation requests are worst-case
linear in number of free blocks
• Can choose block ordering

96

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

97

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

98

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

• Explicit Allocator
• Coalescing
• In-place realloc

99

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

64
Free

100

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 40

Free

101

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Free

102

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Used c

103

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Free b + pad 16
Used c

104

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

105

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

We have enough memory space, but
it is fragmented into free blocks
sized from earlier requests!

We’d like to be able to merge
adjacent free blocks back together.
How can we do this?

106

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

Hey, look! I have a free
neighbor. Let’s be

friends! J

107

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c

Hey, look! I have a free
neighbor. Let’s be

friends! J

108

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

The process of combining adjacent
free blocks is called coalescing.

For your explicit heap allocator, you
should coalesce if possible when a
block is freed. You only need to
coalesce the most immediate right
neighbor.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c

109

Practice 1: Explicit (coalesce)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Used B 16

Free
16

Used A

110

Practice 1: Explicit (coalesce)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Used B 16

Free
16

Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Free

16
Used A

111

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available? Yes! We

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?

112

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available? Yes! We

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?

113

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

• Explicit Allocator
• Coalescing
• In-place realloc

114

Realloc
• For the implicit allocator, we didn’t worry too much about realloc. We always

moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

115

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

a’s earlier request was too small, so
we added padding. Now they are
requesting a larger size we can
satisfy with that padding! So realloc
can return the same address.

116

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

If a realloc is requesting to shrink,
we can still use the same starting
address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

117

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a 24

Free a 16
Free

If a realloc is requesting to shrink,
we can still use the same starting
address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

118

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

Even with the padding, we don’t
have enough space to satisfy the
larger size. But we have an adjacent
neighbor that is free – let’s team up!

119

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

Even with the padding, we don’t
have enough space to satisfy the
larger size. But we have an adjacent
neighbor that is free – let’s team up!

Now we can still return the same
address.

120

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a + pad 16

Free
24

Free

For your project, you should
combine with your right neighbors
as much as possible until we get
enough space, or until we know we
cannot get enough space.

121

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

40
Used a 24

Free

For your project, you should
combine with your right neighbors
as much as possible until we get
enough space, or until we know we
cannot get enough space.

122

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

For your project, you should
combine with your right neighbors
as much as possible until we get
enough space, or until we know we
cannot get enough space.

123

Realloc
• For the implicit allocator, we didn’t worry too much about realloc. We always

moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

• If you can’t do an in-place realloc, then you should move the data elsewhere.

124

Practice 1: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

125

Practice 1: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

24
Used A 24

Free
16

Used B

126

Practice 2: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

127

Practice 2: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

128

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

129

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

130

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

For the explicit allocator, note that
we can’t have payload less than 16
bytes, so here the only option for
the leftover 8 bytes is to use it as
padding for the existing block.

131

Heap metadata

Going beyond: Explicit list w/size buckets
• Explicit lists are much faster than implicit lists.
• However, a first-fit placement policy is still linear in total # of free blocks.
• What about an explicit free list sorted by size (e.g., as a tree)?
• What about several explicit free lists bucketed by size? (below)

small
medium

large
jumbo

Heap
memory

Read B&O Section 9.9.14!

132

In the wild: glibc allocator
• https://sourceware.org/glibc/wiki/MallocInternals

Footer/Boundary tag (see textbook)

https://sourceware.org/glibc/wiki/MallocInternals

133

Final Assignment: Explicit Allocator
• Must have headers that track block information like in implicit (size, status in-

use or free) – you can copy from your implicit version
• Must have an explicit free list managed as a doubly-linked list, using the first

16 bytes of each free block’s payload for next/prev pointers.
• Must have a malloc implementation that searches the explicit list of free

blocks.
• Must coalesce a free block in free() whenever possible with its immediate right

neighbor.
• Must do in-place realloc when possible. Even if an in-place realloc is not

possible, you should still absorb adjacent right free blocks as much as possible
until you either can realloc in place or can no longer absorb and must realloc
elsewhere.

134

Final Project Tips
Read B&O textbook.
• Offers some starting tips for implementing your heap allocators.
• Make sure to cite any design ideas you discover.
Honor Code/collaboration
• All non-textbook code is off-limits.
• Please do not discuss discuss code-level specifics with others.
• Your code should be designed, written, and debugged by you

independently.
Helper Hours
• We will provide good debugging techniques and strategies!
• Come and discuss design tradeoffs!

⭐⭐⭐

135

Recap
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

Next time: optimization

