
This document is copyright (C) Stanford Computer Science, Adam Keppler and Joel Ramirez, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Nick Troccoli, Chris Gregg, and Raymond Klefstad

CS107, Lecture 15
Accessing the Architecture: An Introduction to Comp Arch

Reading: B&O 3.1-3.4

2

What should someone do if they
find a vulnerability? How can we

incentivize responsible disclosure?

3

Disclosure

What’s the best way to disclose vulnerabilities?

• Full disclosure? Make vulnerabilities public as soon as they are found? Few
people now endorse this approach due to its drawbacks.

• Responsible disclosure? Privately alert software maker to fix in reasonable
amount of time before publicizing? Most common, and recommended by ACM
code of ethics.

4

Disclosure

• Various entities may want to financially reward people for finding and
reporting vulnerabilities.

• The US Federal Government is one of the largest discoverers and purchasers of
0-day vulnerabilities. It follows a “Vulnerability Equities Process” (VEP) to
determine which vulnerabilities to responsibly disclose and which to keep
secret and use for espionage or intelligence gathering.

5

How do we weigh competing
stakeholder interests here, such as

country vs. individual?

6

Partiality

Partiality holds that it is acceptable to give preferential treatment to some
people based on our relationships to them or shared group membership
with them.

Impartiality, involves “acting from a position that acknowledges that all
persons are ... equally entitled to fundamental conditions of well-being
and respect.”

7

Partiality

self family friends state world

8

Partiality: preference
towards own family, friends,

and state is morally
acceptable or even required

Partial Cosmpolitanism:
limited preference towards

own state acceptable

Universal Care: preference
towards family acceptable

but not towards state

Impartial Benevolence:
same moral responsibilities

towards all people

Degrees of Partiality

9

Case Study: EternalBlue

2012-2017: NSA
secretly stores the
EternalBlue Microsoft
vulnerability and uses
it to spy on both US
and non-US citizens.

early 2017:
EternalBlue stolen by
hacker group the
ShadowBrokers. NSA
discloses EternalBlue
to Microsoft.

March 14, 2017:
Microsoft releases a
patch for the
vulnerability.

May 12, 2017:
EternalBlue is the basis
of the WannaCry and
other ransomware
attacks, leading to
downtime in critical
hospital and city
systems and over $1
billion of damages.

10

Microsoft’s Argument

“[T]his attack provides yet another example of why the stockpiling of
vulnerabilities by governments is such a problem. ...

We need governments to consider the damage to civilians that comes from
hoarding these vulnerabilities and the use of these exploits.

This is one reason we called in February for a new “Digital Geneva Convention”
to govern these issues, including a new requirement for governments to report
vulnerabilities to vendors, rather than stockpile, sell, or exploit them.

And it’s why we’ve pledged our support for defending every customer
everywhere in the face of cyberattacks, regardless of their nationality.”

Full post here

https://blogs.microsoft.com/on-the-issues/2017/05/14/need-urgent-collective-action-keep-people-safe-online-lessons-last-weeks-cyberattack/

11

Critical Questions

• Do we have special obligations to our own country and to protect our people?
If so, what would this mean?

• If intentionally exploiting a vulnerability is wrong when done by a private
citizen, is it equally wrong when done by the government?

• Should I be loyal to my country, a citizen of the world, or both?

• When should I give preference to my family members and when should I strive
to treat all equally?

What you choose matters – the moral obligations you take on constitute who
you are.

12

Partiality: preference
towards own family, friends,

and state is morally
acceptable or even required

Partial Cosmpolitanism:
limited preference towards

own state acceptable

Universal Care: preference
towards family acceptable

but not towards state

Impartial Benevolence:
same moral responsibilities

towards all people

Revisiting EternalBlue

MicrosoftFederal Government

13

Partiality Takeaways

• Understanding partiality helps us understand how we balance cases of
competing interests and where we may personally fall on this spectrum.

• In order to evaluate situations, it’s critical to understand the good and the bad
that may come of it (e.g. EternalBlue). Better understanding privacy and
privacy concerns is critical to this! (more later)

GCC Optimizations

15

Tail Recursion

Tail recursion is an example of where GCC can identify recursive patterns that
can be more efficiently implemented iteratively.

long factorial(int n) {

if (n <= 1) {

return 1;

}

else return n * factorial(n - 1);

}

16

Tail Recursion Example

Recall the factorial problem from assembly lectures:

unsigned int factorial(unsigned int n) {
 if (n <= 1) {
 return 1;
 }
 return n * factorial(n - 1);
}

What happens with factorial(-1)?
• Infinite recursion → Literal

stack overflow!
• Compiled with -0g!

17

Factorial: -Og

401146 <+0>: cmp $0x1,%edi
401149 <+3>: jbe 0x40115b <factorial+21>
40114b <+5>: push %rbx
40114c <+6>: mov %edi,%ebx
40114e <+8>: lea -0x1(%rdi),%edi
401151 <+11>: callq 0x401146 <factorial>
401156 <+16>: imul %ebx,%eax
401159 <+19>: pop %rbx
40115a <+20>: retq
40115b <+21>: mov $0x1,%eax
401160 <+26>: retq 4011e0 <+0>: mov $0x1,%eax

4011e5 <+5>: cmp $0x1,%edi
4011e8 <+8>: jbe 0x4011fd <factorial+29>
4011ea <+10>: nopw 0x0(%rax,%rax,1)
4011f0 <+16>: mov %edi,%edx
4011f2 <+18>: sub $0x1,%edi
4011f5 <+21>: imul %edx,%eax
4011f8 <+24>: cmp $0x1,%edi
4011fb <+27>: jne 0x4011f0 <factorial+16>
4011fd <+29>: retq

-02:
• What happened?
• Did the compiler “fix” the

infinite recursion?

🤔

vs –O2

18

Breaking Down the –O2

4011e0 <+0>: mov $0x1,%eax # Initialize %eax with 1.
4011e5 <+5>: cmp $0x1,%edi # Compare input value (%edi) with 1.
4011e8 <+8>: jbe 0x4011fd <factorial+29> # If input <= 1 (unsigned check), jump to return.
4011ea <+10>: nopw 0x0(%rax,%rax,1) # No operation (probably for alignment).
4011f0 <+16>: mov %edi,%edx # Copy current value of %edi to %edx.
4011f2 <+18>: sub $0x1,%edi # Decrement %edi.
4011f5 <+21>: imul %edx,%eax # Multiply %eax by %edx and store result in %eax.
4011f8 <+24>: cmp $0x1,%edi # Compare decremented value of %edi with 1.
4011fb <+27>: jne 0x4011f0 <factorial+16> # If %edi is not 1, repeat the multiplication.
4011fd <+29>: retq # Return with the result in %eax.

-02:
• Recursive -> Iterative
• No Stack Overflow, Saves Memory and Operations

19

GCC Optimizations

• Constant Folding

• Common Sub-expression Elimination

• Dead Code

• Strength Reduction

• Code Motion

• Tail Recursion

• Loop Unrolling

20

Loop Unrolling

Loop Unrolling: Do n loop iterations’ worth of work per actual loop iteration, so
we save ourselves from doing the loop overhead (test and jump) every time, and
instead incur overhead only every n-th time.

for (int i = 0; i <= n - 4; i += 4) {

 sum += arr[i];

 sum += arr[i + 1];

 sum += arr[i + 2];

 sum += arr[i + 3];

} // after the loop handle any leftovers

21

Into the Architecture!

22

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)scanf / printf

Program Specific Interactions

23

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

GCC

Where GCC Gets Its Name

24

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Start

How far GCC can reach

Run a.out

25

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

GNU Assembler (Inside GCC)

AS/GAS

26

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

OS Manages Program -> Hardware

RUN

27

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Processing the Machine Code

RUN

28

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

VLSI

Very-Large-Scale Integration

29

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

RTL

RTL (Register-Transfer Level)

30

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Floorplanning

31

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Wire Routing
– Don’t Cross the Wires

32

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Clock Tree Synthesis – Got to
Time it Just Right

33

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Heat & Capacitance

34

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

ASML

Checkout EUV Lithography

35

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Which layer throws
a segfault?

🤔

36

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

HAL IS
WATCHING

Program Memory Managed
By The OS

37

More on the Compiler

38

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• One Unix Command – A lot of steps!

gcc hello.c -o hello

39

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Preprocessing – Handle Programmer Conveniences
• #Macros convert to normal C code

• Lines split by \ are joined

• Comments are removed
• NOTE: Some comments are added, but our comments are removed

• Bring in functions and variables from the headers
• This is how the #include is resolved

gcc -E hello.c > pre_processed_hello

40

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Compilation – C to Assembly

gcc -S hello.c

• Will generate intermediate ‘human-readable’ assembly

• There are different styles/syntax for x86, we use AT&T
• AT&T is also the gcc default

41

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Object Generation – C to Object File

gcc -c hello.c

• “Just compile; Don't link"

• This outputs a non-human readable Object File
• It is defined as a type of incomplete machine code

• With extra metadata to power linking

• Using objdump –d hello.o , we can see the assembly

42

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Linking – Bringing All the pieces together
• Object Files & Libraries -> Fully Executable Machine Code

gcc hello.o -o hello

ld -o hello hello.o -lc -dynamic-linker /lib64/ld-linux-x86-64.so.2
/usr/lib/x86_64-linux-gnu/crt1.o /usr/lib/x86_64-linux-gnu/crti.o
/usr/lib/x86_64-linux-gnu/crtn.o

• NOTE: We can get our .o in more than one-way

gcc -c hello.c

OR

as hello.s

43

What does the Assembler Do?

44

A Two Step Process

• Pass 1: Setup Memory Addresses
• The program reads in the assembly program identifying and tracking:

• Labels

• Literals

• Data Variables

• Pass 2: Generate the Machine Code (Byte/Binary Code)
• Identify Opcode from the mnemonic assembly

• Resolve labels/literals/variables using the tables from Step 1

• Convert Data to Binary

• Identifies External (Out of Program) References and places markers for the Linker

• Setup Metadata for linking if this program has loadable parts

Final Output is not runnable, but has all the parts need if linking can complete

45

Why do we need a linker?

46

Many Links

• Every C file corresponds to a .o

• Libraries can also be made into linkable formats

• We don’t want to have to write all our code in 1 file and we want to use the STL

• The linker makes this all possible

47

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Multi-Step Process -> Multiple Failure Points

• Compilation can fail for many reasons at different points

• Mainly two areas that fail ‘Compilation’ or Linking

• If compilation succeeds, Intermediate Assembly will be good!

48

Peeking at Memory

49

Speed vs Space

• CPU is the most important place
• Closer to CPU, less travel time

• But limited space, so bottleneck getting there

• Think of the CPU like downtown, generally
expensive and highly desirable real estate

• The BUS (actual technical name) is our transit
system around the computer

• Places close to the CPU are more limited and more
valuable, since they can get to the CPU faster

50

Speed vs Space

• All of Memory (Temporary Storage on the right)
and the registers is rent only, so data is constantly
moving around

• Many algorithms developed to decide which data
gets to live where and for how long

• Proper access makes a huge difference on
performance

51

Speed vs Space

• Approximate Access Times
Resource Latency Time

Register 0 Cycles (already here)

Level 1 Cache ~0.5 ns

Level 2 Cache ~7 ns (14x L1)

RAM ~100 ns (20x L2, 200x L1)

SSD ~100-150 us (~14Kx L2, 200Kx L1)

Hard (Spinning) Disk ~10 ms (~2.8Mx L2, 40Mx L1)

Network Packet CA -> Netherlands ->
CA

~150 ms (~21Mx L2, 300Mx L1)

Average Human Response Time to
Visual Stimulus

~200 ms (~28Mx L2, 400Mx L1)

For more on speed checkout:
https://www.cs.princeton.edu/courses/archive/spring20/cos217/lectures/20_Mem_Storage_Hierarchy.pdf

https://gist.github.com/jboner/2841832

https://www.cs.princeton.edu/courses/archive/spring20/cos217/lectures/20_Mem_Storage_Hierarchy.pdf
https://gist.github.com/jboner/2841832

52

Speed vs Space

• Pre-emptive requests and moving of data is critical

• Orders of Magnitude Improvements from high
locality

• Every part of the pyramid is working on making
this faster

• Better BUS, faster storage(both temporary and
permanent), bigger RAM, better algorithms

53

What is Locality?

• Temporal Locality
• Has the data been used recently? Then we expect to be used again soon

• Spatial Locality
• The data appears close together in the program/memory, so it will likely be needed at

the same time.

• Hardware and OS designers consider algorithms to predict and leverage
locality to optimize management of memory resources

• Cache in particular is a limited resource and must be used effectively to
leverage benefits

54

Who Gets to Manage the Memory?

• Registers – Managed by the Compiler/Assembler

• Cache – Managed by Hardware Designers

• Memory – Mainly the OS, influenced by hardware

• Disk – Managed by the user and occasionally OS

55

Architecture & The ISA

56

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Processor

These levels are integrally linked

57

A ‘Simple’ Example

• MIC-1 Architecture (Tanenbaum -
Structured Computer Organization 6th
Edition)

• IJVM ISA – Subset of the Java Virtual
Machine

• A ‘Vanilla’ processor design

58

A ‘Simple’ Example

• Control Store is the most important part!

• Our ISA is defined by that unit

• 9 wires in -> 2**9 possible combinations,
2**9 (512) possible commands

• Each command drives 36 wires to control
the chip

• Assembly/Machine Language is defined by
the hardware

59

A ‘Simple’ Example

• ALU – Arithmetic & Logic Unit
• Performs Math & Logic Operations

• MAR – H are the registers

• B + Decoder – Enables Register to load onto B Bus

• Z and N act similar to our condition codes, but in a
much more limited/simple way

• C controls the C Bus, informing the destination
register to receive its value

60

A ‘Simple’ Example

• Notice how the ALU is only able to take in
the left operand from the H register

• All two operand ALU operations, would
need to first load the left operand to H

• This would be an example of a hardware
based constraint

61

Better Design Better Performance

• The MIC-2 Fixes this issue by adding
another BUS improving the Datapath

• Design directly impacts the ISA that we can
make available

	Slide 1: CS107, Lecture 15 Accessing the Architecture: An Introduction to Comp Arch
	Slide 2: What should someone do if they find a vulnerability? How can we incentivize responsible disclosure?
	Slide 3: Disclosure
	Slide 4: Disclosure
	Slide 5: How do we weigh competing stakeholder interests here, such as country vs. individual?
	Slide 6: Partiality
	Slide 7: Partiality
	Slide 8: Degrees of Partiality
	Slide 9: Case Study: EternalBlue
	Slide 10: Microsoft’s Argument
	Slide 11: Critical Questions
	Slide 12: Revisiting EternalBlue
	Slide 13: Partiality Takeaways
	Slide 14
	Slide 15: Tail Recursion
	Slide 16: Tail Recursion Example
	Slide 17: Factorial: -Og
	Slide 18: Breaking Down the –O2
	Slide 19: GCC Optimizations
	Slide 20: Loop Unrolling
	Slide 21
	Slide 22: Programming Levels
	Slide 23: Programming Levels
	Slide 24: Programming Levels
	Slide 25: Programming Levels
	Slide 26: Programming Levels
	Slide 27: Programming Levels
	Slide 28: Programming Levels
	Slide 29: Programming Levels
	Slide 30: Programming Levels
	Slide 31: Programming Levels
	Slide 32: Programming Levels
	Slide 33: Programming Levels
	Slide 34: Programming Levels
	Slide 35: Programming Levels
	Slide 36: Programming Levels
	Slide 37
	Slide 38: How Does GCC Work?
	Slide 39: How Does GCC Work?
	Slide 40: How Does GCC Work?
	Slide 41: How Does GCC Work?
	Slide 42: How Does GCC Work?
	Slide 43
	Slide 44: A Two Step Process
	Slide 45
	Slide 46: Many Links
	Slide 47: How Does GCC Work?
	Slide 48
	Slide 49: Speed vs Space
	Slide 50: Speed vs Space
	Slide 51: Speed vs Space
	Slide 52: Speed vs Space
	Slide 53: What is Locality?
	Slide 54: Who Gets to Manage the Memory?
	Slide 55
	Slide 56: Programming Levels
	Slide 57: A ‘Simple’ Example
	Slide 58: A ‘Simple’ Example
	Slide 59: A ‘Simple’ Example
	Slide 60: A ‘Simple’ Example
	Slide 61: Better Design Better Performance

