CS107, Lecture 16

Optimization

Reading: B&O 5

This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Lisa Yan, Jerry Cain and others.

CS107 Topic 6: How do the
core malloc/realloc/free

memory-allocation
operations work?

Learning Goals

e Understand how we can optimize our code to improve efficiency and speed
* Learn about the optimizations GCC can perform

Lecture Plan

* What is optimization?

* GCC Optimization

* Limitations of GCC Optimization

* Caching

cp -r /afs/ir/class/csl107/lecture-code/lectl6 .

Lecture Plan

 What is optimization?

* GCC Optimization

* Limitations of GCC Optimization

* Caching

cp -r /afs/ir/class/csl107/lecture-code/lectl6 .

Optimization

e Optimization is the task of making your program faster or more efficient with
space or time. You've seen explorations of efficiency with Big-O notation!

* Targeted, intentional optimizations to alleviate bottlenecks can result in big
gains. But it’s important to only work to optimize where necessary.

Optimization

Most of what you need to do with optimization can be summarized by:

1) If doing something seldom and only on small inputs, do whatever is simplest
to code, understand, and debug

2) If doing things a lot, or on big inputs, make the primary algorithm’s Big-O cost
reasonable

3) Let gcc do its magic from there
4) Optimize explicitly as a last resort

Lecture Plan

* What is optimization?

* GCC Optimization

* Limitations of GCC Optimization

* Caching

cp -r /afs/ir/class/csl107/lecture-code/lectl6 .

GCC Optimization

* Today, we’ll be comparing two levels of optimization in the gcc compiler:
e gcc -00 // mostly just literal translation of C
e gcc -02 // enable nearly all reasonable optimizations
* (we also use —0g, like —O0 but more debugging friendly)

* There are other custom and more aggressive levels of optimization, e.g.:
« -03 //more aggressive than 02, trade size for speed

e -Os //optimize for size
e -Ofast //disregard standards compliance (!!)

* Exhaustive list of gcc optimization-related flags:
e https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compiler optimizations

How many GCC optimization levels are there? Gce supports numbers up to

Asked 11 years, 3 months ago Active 5 months ago Viewed 62k times 3. Anyth|ng above IS

interpreted as 3
How many GCC optimization levels are there?

109 |tried gcc -O1, gcc -O2, gec -O3, and gec -O4
If | use a really large number, it won't work.

However, | have tried

gce —0100 https://stackoverflow.co
m/questions/1778538/ho
and it compiled. W-many-gcc-optimization-

How many optimization levels are there? levels-are-there

10

https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there

Example: Matrix Multiplication

Here’s a standard matrix multiply, a triply-nested for loop:

void mmm(double a[][DIM], double b[][DIM], double c[][DIM], int n) {
for (int 1 = 0; 1 < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
c[i][3] += a[i][k] * b[k][3];

}
}
}
}
./mult // -00 (no optimization) ./mult _opt // -02 (with optimization)
matrix multiply 2572: cycles 1.32M matrix multiply 2572: cycles ©.33M (opt)
matrix multiply 5072: cycles 10.64M matrix multiply 5072: cycles 2.04M (opt)
matrix multiply 10072: cycles 16.55M matrix multiply 10072: cycles 13.660M (opt)

1

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

* Psychic Powers

12

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

s+ PovchicPowers | (kidding)

13

GCC Optimizations

Optimizations may target one or more of:
* Static instruction count
* Dynamic instruction count

* Cycle count / execution time

14

GCC Optimizations

e Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

15

Constant Folding

Constant Folding pre-calculates constants at compile-time where possible.

int seconds = 60 * 60 * 24 * n_days;

16

Constant Folding

int fold(int param) {
char arr[5];
int a = 0x107;
int b = a * sizeof(arr);
int ¢ = sqrt(2.9);
return a * param + (a + 0x15 / c + strlen("Hello") * b - 0x37) / 4;

17

Constant Folding: Before (-00)

00000000000011b9 <fold>:

11b9: 55 push %rbp

11ba: 48 89 e5 mov %rsp,%rbp

11bd: 41 54 push %ril2

11bf: 53 push %rbx

11c0: 48 83 ec 30 sub $0x30,%rsp

11c4: 89 7d cc mov %edi, -0x34(%rbp
11c7: c7 45 ec 07 01 00 00 movl $0x107,-0x14(%rbp)
lice: 8b 45 ec mov -0x14(%rbp) ,%eax
11d1: 48 98 cltq

11d3: 89 c2 mov %eax, %edx

11d5: 89 do mov %»edx, %eax

11d7: cl e 02 shl $0x2,%eax

1llda: 01 do add %»edx, %eax

1ldc: 89 45 e8 mov %eax, -0x18(%rbp)
11df: 48 8b 05 2a @e 00 00 mov oxe2a(%rip),%rax # 2010 <_IO stdin_used+0x10>
1lle6: 66 48 Of 6e cO movq %rax,%xmmo

1lleb: e8 b fe ff ff callg 10a0 <sqrt@plt>
11fo: f2 of 2c co cvttsd2si %xmm@,%eax
11f4: 89 45 e4 mov %eax, -0x1c(%rbp)
11f7: 8b 45 ec mov -0x14(%rbp) ,%eax
11fa: of af 45 cc imul -0x34(%rbp) ,%eax
11fe: 41 89 c4 mov %eax,%rl2d

1201: b8 15 00 00 00 mov $0x15, %eax

1206: 99 cltd

1207: f7 7d e4 idivl -©xlc(%rbp)
120a: 89 c2 mov %eax, %edx

120c: 8b 45 ec mov -0x14(%rbp) ,%eax
120f: 01 do add %»edx, %eax

1211: 48 63 d8 movslqg %eax,%rbx

1214: 48 8d 3d ed od 00 00 lea oxded(%rip),%rdi # 2008 <_I0 stdin_used+0x8>
121b: e8 20 fe ff ff callg 1e4e <strlen@p1t>
1220: 8b 55 e8 mov -0x18(%rbp) ,%edx
1223: 48 63 d2 movslqg %edx,%rdx

1226: 48 of af c2 imul %rdx,%rax

122a: 48 01 d8 add %rbx, %rax

122d: 48 83 e8 37 sub $0x37, %rax

1231: 48 cl1 e8 02 shr $0x2,%rax

1235: 44 01 e0 add %rl2d,%eax

1238: 48 83 c4 30 add $0x30,%rsp

123c: 5b pop %rbx

123d: 41 5c pop %rl2

123f: 5d pop %rbp

1240: c3 retq

18

Constant Folding: After (-02)

00000000000011b0 <fold>:

11bo: 69 c7 07 01 00 00 imul $0x107, %edi, %eax
11b6: 05 a5 06 00 00 add $0x6a5, %eax
11bb: c3 retq

What is the consequence of this for you as a programmer? What should you do

differently or the same knowing that compilers can do this for you?
19

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

20

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = paraml * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);

21

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);

int b = paraml * (param2 + 0x107) + a;

return a * (param2 + 0x107) + b * (param2 + 0x107);
// = 2%*a*a+paraml *a*a

000000V 11bO <subexp>: // paraml in %edi, param2 in %esi

11b0: lea Ox107 (%rsi),%eax // %eax stores a

11b6: imul %eax,%edi // paraml * a

11b9: 1lea (%rdi,%rax,2),%esi // 2 * a + paraml * a

11bc: imul %esi,%eax // a * (2 * a + paraml * a)

11bf: retgq 22

Common Sub-Expression Elimination

Why should we bother saving repeated calculations in variables if the compiler
has common subexpression elimination?

* The compiler may not always be able to optimize every instance. Plus, it can
help reduce redundancy!

 Makes code more readable!

23

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

24

Dead Code

Dead code elimination removes code that doesn’t serve a purpose:

if (paraml < param2 && paraml > param2) {
printf("This test can never be true!\n");
}

// Empty for loop
for (int i = 0; i < 1000; i++);

// If/else that does the same operation in both cases
if (paraml == param2) {
paraml++;
} else {
paraml++;
}

// If/else that more trickily does the same operation in both cases
if (paraml == @) {

return 0;
} else {

return paraml,;

1 25

Dead Code: Before (-00)

0000000000P011a9 <dead code>:

11a9:
1laa:
11ad:
11b1l:
11b4:
11b7:
11ba:
11bd:
11b+f:
11c2:
11c5:
11c7:
l1ce:
11d3:
11d8:
11df:
1lel:
11e5:
llec:
llee:
11f1:
11f4:
11f6:
11fa:
11fc:
1200:
1204:
1206:
120b:
120d:
1210:
1211:

55
48
48
89
89
8b
3b
7d
8b
3b
7e
48
b8
e8
c/
eb
83
81
7e
8b
3b
75
83
eb
83
83
75
b8
eb
8b
c9
c3

89
83
7d
75
45
45
19
45
45
11
8d
00
68
45
04
45
7d
f3
45
45
06
45
04
45
7d
07
00
03
45

e5
ec
ec
e8
ec
e8

ec
e8

ec

ec
ec

00

ec

20

36

£f
e

01
e’

01

01
00

00

00 00 00

03 00 00

00

push
mov
sub
mov
mov
mov
cmp
jge
mov
cmp
le
ea
mov
callq
movl
jmp
addl
cmpl

mov
cmp
jne
addl
jmp
addl
cmpl
jne
mov
jmp
mov
leaveq
retq

%rbp

/rsp,/rbp

$0x20,%rsp

/ed1, -0x14 /rbp
%esi, -0x18(%rbp

-0x14 /rbp %eax
-0x18(%rbp), > %eax

11d8 <dead code+0x2f>
-0x14(%rbp) , %eax
-0x18(%rbp), > %eax

11d8 <dead code+0x2f>
0xe36(/r1p7,/rd1
$0x0, %eax

1040 <pr1ntf plt>
$0x0, -0x4 (%rbp)

1le5 <dead code+0x3c>
$0x1, -0x4(%rbp
$0x3e7, -0x4(%rbp %
11el <dead code+ x38>
-0x14 /rbp %eax
-0x18(%rbp), > %eax

11fc <dead’ code+0x53>
$0x1, -0x147%rb

1200 <dead_code+0x57>
$0x1, -0x14(%rbp

$0x0, -0x14 %rbp

120d" <dead_code+0x64>
$0x0,%eax

1210 <dead_code+0x67>
-0x14(%rbp), %eax

2004 <_I0_stdin_used+0x4>

26

Dead Code: After (-02)

000000000V 11bO <dead code>:
11bo: 8d 47 01 lea ox1(%rdi),%eax
11b3: c3 retq

27

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

28

Strength Reduction

Strength reduction changes divide to multiply, multiply to add/shift, and mod to
AND to avoid using instructions that cost many cycles (multiply and divide).

int a = param2 * 32;
int b = a * 7;

int c = b / 3;

int d = param2 % 2;

for (int 1 = @; i <= param2; i++) {
C += paraml[i] + Ox107 * 1i;

¥

return c + d;

29

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

30

Code Motion

Code motion moves code outside of a loop if possible.

for (int i = @; 1 < n; i++) {
sum += arr[i] + foo * (bar + 3);

¥

Common subexpression elimination deals with expressions that appear multiple
times in the code. Here, the expression appears once, but is calculated each
loop iteration.

31

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

32

Tail Recursion

Tail recursion is an example of where GCC can identify recursive patterns that
can be more efficiently implemented iteratively.

long factorial(int n) {
if (n <= 1) {
return 1;

}

else return n * factorial(n - 1);

¥

33

Tall recursion example: Lab6 bonus

Recall the factorial problem from Lecture 13:

unsigned int factorial(unsigned int n) {
if (n <=1) {
return 1;

}

return n * factorial(n - 1);

* |nfinite recursion = Literal
stack overflow!
* Compiled with -0g!

What happens with factorial(-1)?

https://web.stanford.edu/class/cs107/lab6/extra.html

34

https://web.stanford.edu/class/cs107/lab6/extra.html

401146
401149
40114b
40114c
40114e
401151
401156
401159
40115a
40115b
401160

<+0>:
<+3>:
<+5>:
<+6>:
<+8>:

<+11>:
<+16>:
: pop
<+20>:
<+21>:
<+26>:

<+19>

cmp
jbe
push
mov
lea
callq
imul

retq
mov
retq

Factorial: -0g vs -02

$0x1,%edi

©x40115b <factorial+21>

%rbx
%edi, %ebx

-0x1(%rdi),%edi

0x401146 <factorial>

%ebx, %eax
%rbx

$0x1, %eax

&

-02:
* What happened?

* Did the compiler “fix” the

infinite recursion?

4011e0
4011e5
4011e8
4011ea
401110
40112
40115
40118
4011fb
4011fd

<+0>:
<+5>:
<+8>:

<+10>:
<+16>:
<+18>:
:imul
:cmp
: jne
<+29>:

<+21>
<+24>
<+27>

mov
cmp
jbe
nopw
mov
sub

retq

$0x1, %eax

$0x1, %edi

0x4011fd <factorial+29>
Ox0(%rax,%srax,1)
%edi,sedx

$0x1, %edi

%edx, seax

$0x1, %edi

0x4011f0 <factorial+l6>

35

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

36

Loop Unrolling

Loop Unrolling: Do n loop iterations’ worth of work per actual loop iteration, so
we save ourselves from doing the loop overhead (test and jump) every time, and
instead incur overhead only every n-th time.

for (int 1 = 0; 1 <=n - 4; 1 += 4) {
sum += arr[i];
sum += arr[i + 1];
sum += arr[i + 2];

sum += arr[i + 3];
} // after the loop handle any leftovers

37

Lecture Plan

* What is optimization?

* GCC Optimization

* Limitations of GCC Optimization

* Caching

cp -r /afs/ir/class/csl107/lecture-code/lectl6 .

38

Limitations of GCC Optimization

GCC can’t optimize everything! You ultimately may know more than GCC does.

int char_sum(char *s) {
int sum = 9;
for (size t i = @0; i < strlen(s); i++) {
sum += s[i];
}

return sum;

What is the bottleneck? strlen called for every character
What can GCC do? code motion — pull strlen out of loop

39

Limitations of GCC Optimization

GCC can’t optimize everything! You ultimately may know more than GCC does.

void lowerl(char *s) {
for (size t i = 0; i < strlen(s); i++) {
if (s[i] >= 'A' && s[i] <= 'Z") {

s[i] -= (A" - "a");
}
}
}
What is the bottleneck? strlen called for every character
What can GCC do? nothing! s is changing, so GCC doesn’t know if length is

constant across iterations. But we know its length doesn’t
change. 40

 Callgrind is another tool in the Valgrind suite of tools

 Callgrind is a profiler that measures instruction counts — another way to
measure efficiency

e Can measure the number of instructions executed in a given run of our
program, and where they came from

* Useful for optimizing — we can see where large #s of instruction executions
come from

41

Demo: limitations.c
and callgrind

Why not always optimize?

Why not always just compile with —02?
* Difficult to debug optimized executables — only optimize when complete

* Optimizations may not always improve your program. The compiler does its
best, but may not work, or slow things down, etc. Experiment to see what
works best!

43

Lecture Plan

* What is optimization?

* GCC Optimization

* Limitations of GCC Optimization

e Caching

cp -r /afs/ir/class/csl107/lecture-code/lectl6 .

44

* Processor speed is not the only bottleneck in program performance — memory
access is perhaps even more of a bottleneck!

 Memory exists in levels and goes from really fast (registers) to really slow
(disk).

* As data is more frequently used, it ends up in faster and faster memory.

256KB 8MB 32GB 1TB
L1
I-cache
L2 L3 Main
32 KB cache cache Memory
CPU | Reg -
D-cache
Throughput: 16 B/cycle 8 B/cycle 4 Bl/cycle 2 B/cycle 1 B/30 cycles e
Latency: 3 cycles 14 cycles 40 cycles 100 cycles millions D IS k
45

All caching depends on locality.

Temporal locality

* Repeat access to the same data tends to be co-located in TIME
* Intuitively: things | have used recently, | am likely to use again soon

Spatial locality
* Related data tends to be co-located in SPACE
* Intuitively: data that is near a used item is more likely to also be accessed

46

All caching depends on locality.

Realistic scenario:
e 97% cache hit rate
* Cache hit costs 1 cycle

* Cache miss costs 100 cycles

* How much of your memory access time is spent on 3% of accesses that are
cache misses?

47

Demo: cache.c

Optimizing Your Code

* Explore various optimizations you can make to your code to reduce instruction
count and runtime.
* More efficient Big-O for your algorithms

* Explore other ways to reduce instruction count

* Look for hotspots using callgrind
* Optimize using —02
* And more...

49

* What is optimization? Lecture 16 takeaway: Compilers

* GCC Optimization can apply various optimizations to
* Limitations of GCC Optimization | make our code more efficient,

* Caching without us having to rewrite code.

However, there are limitations to
these optimizations, and
sometimes we must optimize
ourselves, using tools like

Next time: wrap up Callgrind.

50

