
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 17
Wrap-Up / What’s Next?

2

Plan For Today
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Q&A

3

Plan For Today
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Q&A

4

We’ve covered a lot in just
10 weeks! Let’s take a look

back.

5

Our CS107 Journey

Bits and
Bytes

C Strings

Arrays
and

Pointers

Stack and
Heap

Generics

Assembly

Heap
Allocators

6

Course Overview
1. Bits and Bytes - How can a computer represent integer numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of

memory in our programs?
4. Generics - How can we use our knowledge of memory and data

representation to write code that works with any data type?
5. Assembly - How does a computer interpret and execute C programs?
6. Heap Allocators - How do core memory-allocation operations

like malloc and free work?

7

First Day
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

8

First Day
The command-line is a text-based interface to navigate a computer, instead of a
Graphical User Interface (GUI).

Graphical User Interface Text-based interface

9

Bits And Bytes
Key Question: How can a computer represent integer numbers?

10

Bits And Bytes
Why does this matter?
• Limitations of representation and arithmetic impact programs!
• We can also efficiently manipulate data using bits.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

11

C Strings
Key Question: How can a computer represent and manipulate more complex
data like text?
• Strings in C are arrays of characters ending with a null terminator!
• We can manipulate them using pointers and C library functions (many of which

you could probably implement).

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

12

C Strings
Why does this matter?
• Understanding this representation is key to efficient string manipulation.
• This is how strings are represented in both low- and high-level languages!
• C++: https://www.quora.com/How-does-C++-implement-a-string
• Python: https://www.laurentluce.com/posts/python-string-objects-implementation/

https://www.quora.com/How-does-C++-implement-a-string
https://www.laurentluce.com/posts/python-string-objects-implementation/

13

Pointers, Stack and Heap
Key Question: How can we effectively manage all types of memory in our
programs?
• Arrays let us store ordered lists of information.
• Pointers let us pass addresses of data instead of the data itself.
• We can use the stack, which cleans up memory for us, or the heap, which we

must manually manage.

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

14

Stack And Heap
Why does this matter?
• The stack and heap allow for two ways to store data in

our programs, each with their own tradeoffs, and it’s
crucial to understand the nuances of managing memory
in any program you write!
• Pointers let us pass around references to data efficiency

15

Generics
Key Question: How can we use our knowledge of memory and data
representation to write code that works with any data type?
• We can use void * to circumvent the type system, memcpy, etc. to copy

generic data, and function pointers to pass logic around.

Why does this matter?
• Working with any data type lets us write more generic, reusable code.
• Using generics helps us better understand the type system in C and other

languages, and where it can help and hinder our program.

16

Assembly Language
Key Question: How does a computer interpret and execute C programs?
• GCC compiles our code into machine code instructions executable by our

processor.
• Our processor uses registers and instructions like mov to manipulate data.

17

Assembly Language
Why does this matter?
• We write C code because it is higher level

and transferrable across machines. But it is
not the representation executed by the
computer!
• Understanding how programs are compiled

and executed, as well as computer
architecture, is key to writing performant
programs (e.g. fewer lines of code is not
necessarily better).
• We can reverse engineer and exploit

programs at the assembly level!

18

Heap Allocators
Key Question: How do core memory-allocation operations
like malloc and free work?
• A heap allocator manages a block of memory for the heap and completes

requests to use or give up memory space.
• We can manage the data in a heap allocator using headers, pointers to free

blocks, or other designs

Why does this matter?
• Designing a heap allocator requires making many design decisions to optimize

it as much as possible. There is no perfect design!
• All languages have a “heap” but manipulate it in different ways.

19

Ethics, Privacy, Partiality and Trust
Key Question: How do we act responsibly in maintaining security, protecting
privacy, and ensuring warranted trust in the systems we build and maintain?

Why does this matter?
• Responsible programming involves documentation -- including informative

error messages! -- that allows others to evaluate the reliability of your code.
• Responsible system and program design also requires choosing a trust model

and considering data privacy. This might also require deciding to whom to be
partial.

20

Our CS107 Journey

Bits and
Bytes

C Strings

Arrays
and

Pointers

Stack and
Heap

Generics

Assembly

Heap
Allocators

21

CS107 Learning Goals
The goals for CS107 are for students to gain mastery of

- writing C programs with complex use of memory and pointers
- an accurate model of the address space and compile/runtime behavior

of C programs
to achieve competence in

- translating C to/from assembly
- writing programs that respect the limitations of computer arithmetic
- identifying bottlenecks and improving runtime performance
- working effectively in a Unix development environment
- using ethical frameworks and case studies to inform decision-making

and have exposure to
- a working understanding of the basics of computer architecture

22

The C Coding Experience

https://www.youtube.com/watch?v=G7LJC9vJluU

https://www.youtube.com/watch?v=G7LJC9vJluU

23

Plan For Today
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Q&A

24

Plan For Today
• Recap: Where We’ve Been
• Larger Applications
• CS107 Tools and Techniques
• CS107 Concepts

• What’s Next?
• Q&A

25

Plan For Today
• Recap: Where We’ve Been
• Larger Applications
• CS107 Tools and Techniques
• CS107 Concepts

• What’s Next?
• Q&A

26

Tools and Techniques
• Unix and the command line
• Coding Style
• Debugging (GDB)
• Testing (Sanity Check)
• Memory Checking (Valgrind)
• Profiling (Callgrind)

27

Unix And The Command Line
Unix and command line tools are extremely popular tools outside of CS107 for:
• Running programs (web servers, python programs, remote programs…)
• Accessing remote servers (Amazon Web Services, Microsoft Azure, Heroku…)
• Programming embedded devices (Raspberry Pi, etc.)

Our goal for CS107 was to help you become proficient in navigating Unix

28

Coding Style
• Writing clean, readable code is crucial for any computer science project
• Unfortunately, a fair amount of existing code is poorly-designed/documented

Our goal for CS107 was to help you write with good coding style, and
read/understand/comment provided code.

29

Debugging (GDB)
• Debugging is a crucial skill for any computer scientist
• Our goal for CS107 was to help you become a better debugger
• narrow in on bugs
• diagnose the issue
• implement a fix

• Practically every project you work on will have debugging facilities
• Python: “PDB”
• IDEs: built-in debuggers (e.g. QT Creator, Eclipse)
• Web development: in-browser debugger

30

Testing (Sanity Check)
• Testing is a crucial skill for any computer scientist
• Our goal for CS107 was to help you become a better tester
• Writing targeted tests to validate correctness
• Use tests to prevent regressions
• Use tests to develop incrementally

31

Memory Checking and Profiling
• Memory checking and profiling are crucial for any computer scientist to

analyze program performance and increase efficiency.
• Many projects you work on will have profiling and memory analysis facilities:
• Mobile development: integrated tools (XCode Instruments, Android Profiler, etc.)
• Web development: in-browser tools

32

Tools
You’ll see manifestations of these tools throughout projects you work on. We
hope you can use your CS107 knowledge to take advantage of them!

33

Plan For Today
• Recap: Where We’ve Been
• Larger Applications
• CS107 Tools and Techniques
• CS107 Concepts

• What’s Next?
• Q&A

34

Concepts
• C Language
• Bit-Level Representations
• Arrays and Pointers
• Memory Management
• Generics
• Assembly

35

Systems
How can we write programs that execute multiple tasks simultaneously? (take
CS111!)
• Threads of execution
• “Locks” to prevent simultaneous access
How is a compiler implemented? (take CS143!) [Demo]
• Lexical analysis
• Parsing
• Semantic Analysis
• Code Generation
How can applications communicate over a network? (take CS144!)
• How can we weigh different tradeoffs of network architecture design?
• How can we effectively transmit bits across a network?

36

Systems
How is an operating system implemented? (take CS111/CS140/CS112/CS212!)
• Threads
• User Programs
• Virtual Memory
• Filesystem

37

Machine Learning
Can we speed up machine learning training with reduced precision
computation?
• https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-

generation-of-ai-chips/
• https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/

How can we implement performant machine learning libraries?
• Popular tools such as TensorFlow and PyTorch are implemented using C!
• https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
• https://www.tensorflow.org/guide/extend/architecture

https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
https://www.tensorflow.org/guide/extend/architecture

38

Web Development
How can we efficiently translate Javascript code to machine code?
• The Chrome V8 JavaScript engine converts Javascript into machine code for

computers to execute: https://medium.freecodecamp.org/understanding-the-
core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
• The popular Node.js web server tool is built on Chrome V8

How can we compile programs into an efficient binary instruction format that
runs in a web browser?
• WebAssembly is an emerging standard instruction format that runs in

browsers: https://webassembly.org
• [DEMO] You can compile C/C++/other languages into WebAssembly for web

execution

https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://webassembly.org/
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html

39

Programming Languages / Runtimes
How can programming languages and runtimes efficiently manage memory?
• Manual memory management (C/C++)
• Reference Counting (Swift)
• Garbage Collection (Java)

How can we design programming languages to reduce the potential for
programmer error? (take CS242!)
• Haskell/Swift ”Optionals”

How can we design portable programming languages?
• Java Bytecode: https://en.wikipedia.org/wiki/Java_bytecode

https://en.wikipedia.org/wiki/Java_bytecode

40

Theory
How can compilers output efficient machine code instructions for programs?
(take CS143!)
• Languages can be represented as regular expressions and context-free

grammars
• We can model programs as control-flow graphs for additional optimization

41

Security
How can we find / fix vulnerabilities at various levels in our programs? (take
CS155!)
• Understand machine-level representation and data manipulation
• Understand how a computer executes programs
• macOS High Sierra Root Login Bug: https://objective-

see.com/blog/blog_0x24.html

How can we ensure that our systems and networks are secure? (take CS155!)
How can we design internet services that are worthy of trust? (take CS152!)

https://objective-see.com/blog/blog_0x24.html

42

Ethics, Privacy, Partiality and Trust
Why is privacy important? What technical and policy standards should we
strive for in protecting privacy? (take CS 182!)
How can we recognize ethically important decisions as they arise? What
policies ought we to adopt to address these issues? (take CS 181!)

43

Floats and Assembly
• Unfortunately, we couldn’t cover floating point numbers this quarter
• Lecture video from past quarter here!

• An example of tradeoffs in design decisions.
• Importance of thinking through priorities and pros/cons when designing

systems.

https://youtu.be/wh3t9KTzVmE

44

Key (floating) points

Single operations are commutative,
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are
often unwise.

Approximation and rounding is
inevitable.

45

Key (floating) points

Single operations are commutative,
but sequence is not associative.

(a + b) equals (b + a)
But (a + b) + c may not equal a + (b + c)

Equality comparison operations are
often unwise.

Approximation and rounding is
inevitable.

46

FAST!

Nick’s Official
Guide To Making
Money

It’s easy!

47

Demo: Float Arithmetic

bank.c

Try it yourself:
./bank 100 1 # deposit
./bank 100 -1 # withdraw
./bank 100000000 -1 # make bank
./bank 16777216 1 # lose bank

48

Plan For Today
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Q&A

49

After CS107, you are
prepared to take a variety
of classes in various areas.

What are some options?

50

Where Are We?

CS 106B/X

Programming
Abstractions

CS 107/E

Computer
Organization and

Systems

CS 103

Mathematical
Foundations of

Computing

CS 109

Intro to Probability
for Computer

Scientists

CS 161

Design and Analysis
of Algorithms

Theory
Sy

st
em

s

We are here

CS 111

Operating Systems
Principles

51

CS 111
• How can programs perform multiple tasks

concurrently and share resources between those
tasks?
• How does every program think it has access to all

memory addresses if it needs them?
• How can we implement a filesystem to store

persistent data?

Jerry Cain David Mazieres

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)#/media/Fi
le:Multithreaded_process.svg

Nick Troccoli John Ousterhout

52

Other Courses
• CS112: Operating Systems Project
• CS140/CS212: Operating Systems
• CS143: Compilers
• CS144: Networking
• CS145: Databases
• CS152: Trust and Safety Engineering
• CS155: Computer and Network Security
• CS166: Data Structures
• CS181: Computers, Ethics, and Public Policy
• CS182: Ethics, Public Policy, and Technological Change
• CS221: Artificial Intelligence

• CS246: Mining Massive Datasets
• EE108: Digital Systems Design
• EE180: Digital Systems Architecture

53

Plan For Today
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Q&A

54

Thank you!

55

Course Evaluations
We hope you can take the time to fill out the end-quarter CS 107 course
evaluation once it’s available. We sincerely appreciate any feedback you have
about the course and read every piece of feedback we receive. We are always
looking for ways to improve!

Thank you!

