
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under 
Creative Commons Attribution 2.5 License.  All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES:  This content is protected and may not be shared, 

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 18
Heap Allocators Episode II

Reading: B&O 9.9, 9.11



2

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).



3

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator cannot assume anything about the order of allocation 
and free requests, or even that every allocation request is accompanied 
by a matching free request.



4

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator marks memory regions as allocated or available.  It 
must remember which is which to properly provide memory to clients.



5

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator may have options for which memory to use to fulfill an 
allocation request.  It must decide this based on a variety of factors.



6

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator must respond immediately to allocation requests and 
should not e.g. prioritize or reorder certain requests to improve 
performance.



7

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).



8

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit 

time.  This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the 

limited heap memory to satisfy requests.



9

Implicit Free List Allocator
• Key idea: in order to reuse blocks, we need a way to track which blocks are 

allocated and which are free.
• We allocate extra space before each block for a header storing its payload size 

and whether it is allocated or free.
• When we allocate a block, we look through the blocks to find a free one, and 

we update its header to reflect its allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free.
• The header should be 8 bytes (or larger).
• By storing the block size of each block, we implicitly have a list of free blocks.



10

Representing Headers
How can we store both a size and a status (Free/Allocated) in 8 bytes?

Int for size, int for status?  

Key idea: block sizes will always be multiples of 8.  (Why?)
• Least-significant 3 bits will be unused! 
• Solution: use one of the 3 least-significant bits to store free/allocated status

 

no!  malloc/realloc use size_t for sizes!



11

Implicit Free List Summary
For all blocks,
• Have a header that

stores size and status.
• Our list links all blocks,

allocated (A) and free (F).

Keeping track of free blocks:
• Improves memory utilization (vs bump allocator)
• Decreases throughput (worst case allocation request has O(A + F) time)
• Increases design complexity J

Header (8 Bytes)

Block size 00X

alloc/free

0363



12

Coalescing
void *e = malloc(24); // returns NULL!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

8
Free

8
Free

24
Used

You do not need to worry about this 
problem for the implicit allocator, but this 
is a requirement for the explicit allocator! 
(More about this later).



13

In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a + 
pad

8
Used b 40

Free

Variable Value

a 0x10

b 0x28

The implicit allocator can always move memory to a new 
location for a realloc request.  The explicit allocator must 
support in-place realloc (more on this later).



14

Summary: Implicit Allocator
An implicit allocator is a more efficient implementation that has reasonable 
throughput and utilization due to its recycling of blocks.

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?



15

Checkpoint Review
Heap allocator terminology: What do the below terms mean/imply?
• Payload, Header, Free/Used(Allocated) status
• Splitting policy
• Memory utilization vs Throughput
• Bump allocator, Implicit free list Allocator
• First-fit approach, Best-fit approach
• Coalescing
• Realloc in place
• Fragmentation



16

Lecture Plan
• Recap: heap allocators so far 
• Method 0: Bump Allocator 
• Method 1: Implicit Free List Allocator 
• Method 2: Explicit Free List Allocator 



17

Lecture Plan
• Recap: heap allocators so far 
• Method 0: Bump Allocator 
• Method 1: Implicit Free List Allocator 
• Method 2: Explicit Free List Allocator 

• Explicit Allocator 
• Coalescing 
• In-place realloc 



18

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all 

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and 

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free

8 
Used

56 
Free



19

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all 

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and 

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8 

Used 0x10 0x50 8
Free 0x10 null



20

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all 

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and 

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8 

Used 0x10 0x50 8
Free 0x10 null

This is inefficient – it triples the size of every header, 
when we just need to jump from one free block to 
another.  And even if we just made free headers bigger, 
it’s complicated to have two different header sizes.



21

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all 

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and 

a pointer to the next free block.  This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?  



22

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all 

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and 

a pointer to the next free block.  This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?  More difficult to access in a separate place 

– prefer storing near blocks on the heap itself.



23

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re 

free.  
• Idea: since we only need to store these pointers for free blocks, let’s store 

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free

24 
Used

32
Free



24

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re 

free.  
• Idea: since we only need to store these pointers for free blocks, let’s store 

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24 

Used
32

Free 0x10 null

0x10
First free block



25

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re 

free.  
• Idea: since we only need to store these pointers for free blocks, let’s store 

them in the first 16 bytes of each free block’s payload!
• This means each payload must be big enough to store 2 pointers (16 bytes).  So 

we must require that for every block, free and allocated. (why?)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24 

Used
32

Free 0x10 null



26

Explicit Free List Allocator
• This design builds on the implicit allocator, but also stores pointers to the next 

and previous free block inside each free block’s payload.
• When we allocate a block, we look through just the free blocks using our linked 

list to find a free one, and we update its header and the linked list to reflect its 
allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free and 

update the linked list.

This explicit list of free blocks increases 
request throughput, with some costs 
(design and internal fragmentation)



27

Explicit Free List: List Design
How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.)

Better memory util, 
Linear free

Constant free (push 
recent block onto stack)

(more at end of lecture)

Up to you!



28

Explicit free list design
How do you want to organize your explicit free list?(utilization/throughput)
A. Address-order 

B. Last-in first-out (LIFO)

C. Other (e.g., by size, etc.)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68 0x70 0x78 0x80

16
Free 0x70 0x40 16 

Used
16

Free 0x10 null 16
Used

16
Free null 0x10

Better memory util, linear free

Constant free (push recent block onto stack)

(see textbook)

Up to you!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24 

Used
32

Free 0x10 null
0x10

First free 
block

0x70

First free 
block



29

Implicit vs. Explicit: So Far
Implicit Free List
• 8B header for size + alloc/free status

• Allocation requests are worst-case 
linear in total number of blocks
• Implicitly address-order

Explicit Free List
• 8B header for size + alloc/free status
• Free block payloads store prev/next 

free block pointers

• Allocation requests are worst-case 
linear in number of free blocks
• Can choose block ordering



30

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks when freeing?                                                   

Yes!  We can use a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?



31

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks when freeing?                                              

Yes!  We can use a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?



32

Lecture Plan
• Recap: heap allocators so far 
• Method 0: Bump Allocator 
• Method 1: Implicit Free List Allocator 
• Method 2: Explicit Free List Allocator 

• Explicit Allocator 
• Coalescing 
• In-place realloc 



33

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

64
Free



34

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 40

Free



35

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Free



36

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Used c



37

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Free b + pad 16
Used c



38

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c



39

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

We have enough memory space, but 
it is fragmented into free blocks 
sized from earlier requests!

We’d like to be able to merge 
adjacent free blocks back together.
How can we do this?



40

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

Hey, look!  I have a free 
neighbor.  Let’s be 

friends! J



41

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c

Hey, look!  I have a free 
neighbor.  Let’s be 

friends! J



42

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

The process of combining adjacent 
free blocks is called coalescing.

For your explicit heap allocator only 
(not required for implicit), you 
should coalesce if possible when a 
block is freed.  You only need to 
coalesce the most immediate right 
neighbor.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c



43

Practice 1: Explicit (coalesce)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Used B 16

Free
16

Used A



44

Practice 1: Explicit (coalesce)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Used B 16

Free
16

Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Free

16
Used A



45

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?  Yes!  We 

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?



46

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?  Yes!  We 

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?



47

Lecture Plan
• Recap: heap allocators so far 
• Method 0: Bump Allocator 
• Method 1: Implicit Free List Allocator 
• Method 2: Explicit Free List Allocator 

• Explicit Allocator 
• Coalescing 
• In-place realloc 



48

Realloc
• For the implicit free list allocator, we didn’t worry too much about realloc.  We 

always moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place.  How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.



49

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

a’s earlier request was too small, so 
we added padding.  Now they are 
requesting a larger size we can 
satisfy with that padding!  So realloc 
can return the same address.



50

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

If a realloc is requesting to shrink, 
we can still use the same starting 
address.  

If we can, we should try to recycle 
the now-freed memory into another 
freed block.



51

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a 24

Free a 16
Free

If a realloc is requesting to shrink, 
we can still use the same starting 
address.  

If we can, we should try to recycle 
the now-freed memory into another 
freed block.



52

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

Even with the padding, we don’t 
have enough space to satisfy the 
larger size.  But we have an adjacent 
neighbor that is free – let’s team up!



53

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

Even with the padding, we don’t 
have enough space to satisfy the 
larger size.  But we have an adjacent 
neighbor that is free – let’s team up!

Now we can still return the same 
address.



54

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a + pad 16

Free
24

Free

For your project (explicit only), you 
should combine with your right 
neighbors as much as possible until 
we get enough space, or until we 
know we cannot get enough space.



55

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

40
Used a 24

Free

For your project (explicit only), you 
should combine with your right 
neighbors as much as possible until 
we get enough space, or until we 
know we cannot get enough space.



56

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

For your project (explicit only), you 
should combine with your right 
neighbors as much as possible until 
we get enough space, or until we 
know we cannot get enough space.



57

Realloc
• For the implicit free list allocator, we didn’t worry too much about realloc.  We 

always moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place.  How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

• If you can’t do an in-place realloc, then you should move the data elsewhere.



58

Practice 1: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B



59

Practice 1: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

24
Used A 24

Free
16

Used B



60

Practice 2: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B



61

Practice 2: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B



62

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B



63

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B



64

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

For the explicit allocator, note that 
we can’t have payload less than 16 
bytes, so here the only option for 
the leftover 8 bytes is to use it as 
padding for the existing block.



67

Final Assignment: Explicit Allocator
• Must have headers that track block information like in implicit (size, status in-

use or free) – you can copy from your implicit version
• Must have an explicit free list managed as a doubly-linked list, using the first 

16 bytes of each free block’s payload for next/prev pointers.
• Must have a malloc implementation that searches the explicit list of free 

blocks.
• Must coalesce a free block in free() whenever possible with its immediate right 

neighbor. (only required for explicit)
• Must do in-place realloc when possible (only required for explicit).  Even if an 

in-place realloc is not possible, you should still absorb adjacent right free 
blocks as much as possible until you either can realloc in place or can no longer 
absorb and must realloc elsewhere.



68

Final Project Tips
Read B&O textbook.
• Offers some starting tips for implementing your heap allocators.
• Make sure to cite any design ideas you discover.
Honor Code/collaboration
• All non-textbook code is off-limits.
• Please do not discuss discuss code-level specifics with others.
• Your code should be designed, written, and debugged by you 

independently.
Helper Hours
• We will provide good debugging techniques and strategies!
• Come and discuss design tradeoffs!

⭐⭐⭐



69

Recap
• Recap: heap allocators so far 
• Method 0: Bump Allocator 
• Method 1: Implicit Free List Allocator 
• Method 2: Explicit Free List Allocator

Next time: Review session with our wonder-ca Daniel!

Lecture 18 takeaway: Bump, implicit 
free list and explicit free list are 3 heap 
allocator designs, each with their own 
tradeoffs.  The implicit free list and 
explicit free list designs use headers 
to keep track of blocks.  Allocators can 
support techniques like realloc-in-
place and coalesce-on-free (both only 
required for your explicit allocator) to 
try and better handle requests.


