
CS107, Lecture 20: Sockets Programming

Slides by Daniel Rebelsky, modeled in part off
of slides from Nick Troccoli and Jerry Cain, and
content in part from ChatGPT and Beej’s Guide

to Network Programming Using Internet
Sockets

https://beej.us/guide/bgnet/
https://beej.us/guide/bgnet/
https://beej.us/guide/bgnet/

Quick Overview

CultureDuQ, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via
Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0

TCP and UDP

• Both run on top of IP
• Both have a port number (16 bits)
– Official port usage is assigned by IANA
– Ports under 1024 are typically reserved (i.e., on the myth

machines, you need special permission to bind to them)
– Common ports include: 22 (SSH), 53 (DNS), 80 (HTTP), 443

(HTTPS)—see also https://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xhtml or
/etc/services

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

TCP and UDP (continued)

• So, to connect to a remote server, we need both an IP address and
a port number
– Quick aside on IP addresses: IPv4 addresses are only 32 bits long, which

only makes for about 4 billion total IPs, which we’ve fully allocated; IPv6
addresses, by contrast, are 128 bits long
• IPv4 addresses are often written in dotted quad format of 192.168.1.1
• IPv6 addresses are a little more complicated, but can be written as

2607:f6d0:0:0:0:0:0:0 (which can also be written as 2607:f6d0::)
• Either way, IP addresses can be a little cumbersome to write, so we use DNS

(domain name service) to map from domain names (e.g.,
web.stanford.edu) to IP addresses (e.g., 171.67.215.200)

TCP and UDP (continued)

• Quick aside on client server model: for the rest of the lecture, we’ll be
implicitly referencing this model—the rough idea is that we have a server
(imagine, e.g., Google) which serves data to one or more clients (imagine,
e.g., people Googling)

• TCP and UDP both allow us to send arbitrary bytes over the network
• It is important that we send bytes in a way that both the client and server

will understand
– A protocol specifies how the bytes will be interpreted
– IP and TCP/UDP level details specify that the network byte order

should be big-endian (myth machines are little-endian)

TCP and UDP (continued)

• TCP provides a “reliable bytestream” abstraction (except in
exceptional cases, the data will arrive correctly on the other side)
– Useful for non-time critical applications (e.g., web servers (HTTP prior to

HTTP/3 runs over TCP), ssh, etc…)

• UDP provides an unreliable datagram abstraction (it’s effectively
just a userspace wrapper around IP, hence “User Datagram
Protocol”)
– Useful for time critical applications, or applications that can deal with some

data loss (e.g., video conferencing, online gaming, etc…)

SOCKET PROGRAMMING BASICS

socket()

• int socket(int domain, int type, int protocol);

• The domain specifies what type of socket we want—for this lecture, it will
be one of PF_INET or PF_INET6

• The type for this lecture will always be SOCK_STREAM (meaning TCP, it
could also be SOCK_DGRAM for UDP)

• The protocol is the protocol number (e.g., one of IPPROTO_TCP or
IPPROTO_UDP, but we can use 0 since SOCK_STREAM means TCP, and
it will figure it out)

• Returns a “file descriptor” on success and <0 on error (setting errno as
appropriate)

Detour: file descriptors

• You may encounter the phrase “everything is a file” when working in a
Unix/Linux context

• File descriptors are one incarnation of this—a FILE * is a convenient
wrapper around a file descriptor
– A file descriptor is an integer that the OS hands to our process that we

can use syscalls on to read/write data (e.g., read, write) or
otherwise modify (e.g., fcntl)

– We’ll have the following file descriptors always by default: 0 (stdin),
1 (stdout), 2 (stderr)

• Note that we use file descriptors for both real files and for sockets (among
other things)

Detour: error handling
• At Adam’s request
• Many system calls (and wrapping C functions) can fail
• In C, we’ll often see failure represented as a negative value, with errno (see man errno) set

appropriately (perror will print the corresponding error message)
– Basically every function today can fail in this manner

• In 107, we’ve mostly ignored this up until this point, but there are a few ways to handle this in C
– Explicitly check every return value that might fail, write out the failure condition
– Wrap functions in safe forms (e.g., the textbook creates Write from write)
– Use macros to help simplify
– gotos are often used for clean up, but given their potential for misuse, we won’t cover them to

closely here
– On the (optional) sockets assignment, we’ll provide a few options for error handling (which you

should be doing)

Detour: man pages

• While, in general, we like to tell you to read the manpage for
the functions, the man pages for sockets programming tend to
be comparatively more difficult to actually find and
understand

• I would recommend using the fake man pages from
https://beej.us/guide/bgnet/ and then consulting the real
man pages later, as appropriate (and if necessary)

https://beej.us/guide/bgnet/

bind()

• “bind”s a socket to a particular address/port combo
• int bind(int sockfd, struct sockaddr
*my_addr, int addrlen);

• Note, we tend to only use bind as a server (as a client, we
tend not to actually care what our port is)

struct sockaddr

• struct sockaddr is the generic type for a socket address, but we’ll use
struct sockaddr_in or struct sockaddr_in6 and cast to a
struct sockaddr
struct sockaddr {
 unsigned short sa_family; // address family, AF_xxx
 char sa_data[14]; // 14 bytes of protocol address
};
struct sockaddr_in {
 short int sin_family; // Address family, AF_INET
 unsigned short int sin_port; // Port number
 struct in_addr sin_addr; // Internet address
 unsigned char sin_zero[8]; // Same size as struct sockaddr
};
struct in_addr {
 uint32_t s_addr; // that's a 32-bit int (4 bytes)
};
struct sockaddr_in6 {
 u_int16_t sin6_family; // address family, AF_INET6
 u_int16_t sin6_port; // port number, Network Byte Order
 u_int32_t sin6_flowinfo; // IPv6 flow information
 struct in6_addr sin6_addr; // IPv6 address
 u_int32_t sin6_scope_id; // Scope ID
};
struct in6_addr {
 unsigned char s6_addr[16]; // IPv6 address
};

inet_pton(), inet_addr(), and
inet_aton()

• aton and addr only work for IPv4 addresses
• int inet_aton(const char *cp, struct
in_addr *inp);

• in_addr_t inet_addr(const char *cp);
• cp is a string of a dotted quad IP address
• int inet_pton(int af, const char *src,
void *dst);

getaddrinfo()

int getaddrinfo(const char *node, // e.g. "www.example.com" or IP
 const char *service, // e.g. "http" or port number
 const struct addrinfo *hints,
 struct addrinfo **res);

• Gives us a linked list of struct addrinfos
struct addrinfo {
 int ai_flags; // AI_PASSIVE, AI_CANONNAME, etc.
 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM
 int ai_protocol; // use 0 for "any"
 size_t ai_addrlen; // size of ai_addr in bytes
 struct sockaddr *ai_addr; // struct sockaddr_in or _in6
 char *ai_canonname; // full canonical hostname
 struct addrinfo *ai_next; // linked list, next node
};

bind()

• int bind(int sockfd, struct sockaddr
*my_addr, int addrlen);

• Binds our socket to the address and port specified by
my_addr

• We will often use INADDR_ANY to indicate that we want to
accept any IPv4 connection (slightly different for IPv6, see
“Jumping from IPv4 to IPv6” on Beej’s guide)

listen()

• int listen(int sockfd, int backlog);
• Starts our socket “listening” (what a server would do)
• backlog is how many outstanding requests can be queued

until we accept them

accept()

• int accept(int sockfd, struct sockaddr *addr, socklen_t
*addrlen);

• Returns a file descriptor for a remote connection
• We’ll use a struct sockaddr_storage (guaranteed large enough to store any

address) for the address

struct sockaddr_storage {
 sa_family_t ss_family; // address family
 // all this is padding, implementation specific, ignore it:
 char __ss_pad1[_SS_PAD1SIZE];
 int64_t __ss_align;
 char __ss_pad2[_SS_PAD2SIZE];
};

connect()

• int connect(int sockfd, struct sockaddr
*serv_addr, int addrlen);

• Useful for the client, connects our local socket to the remote
address

send()

• int send(int sockfd, const void *msg, int
len, int flags);

• Returns how many bytes were actually sent (may be less than
we requested, which we’ll have to handle)

• flags can be 0 by default
• Note that while we could use write, we tend to use send

instead since it lets us to more specific socket things (see the
man page for flags)

recv()

• int recv(int sockfd, void *buf, int len,
int flags);

• Returns how many bytes were received (no more than len)
• Returns <0 on error, 0 when remote side has closed

close()

• close(sockfd);
• Prevents any further reads or writes to the socket, the remote

peer will receive an error on trying to read or write
• Also, marks the fd as usable again (no longer counts toward

our per-process limit)

shutdown()

• int shutdown(int sockfd, int how);
• Note that you will still have to close eventually

how Effect

0 Further receives are disallowed

1 Further sends are disallowed

2 Further sends and receives are
disallowed (like close())

CODE DEMO

Handling multiple clients

• We may not get to this in lecture, but you should investigate
using select() and/or poll() (or epoll if you want to
get really fancy) for the assignment

