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Quick Overview
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TCP and UDP

• Both run on top of IP
• Both have a port number (16 bits)
– Official port usage is assigned by IANA
– Ports under 1024 are typically reserved (i.e., on the myth 

machines, you need special permission to bind to them)
– Common ports include: 22 (SSH), 53 (DNS), 80 (HTTP), 443 

(HTTPS)—see also https://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xhtml or 
/etc/services

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml


TCP and UDP (continued)

• So, to connect to a remote server, we need both an IP address and 
a port number
– Quick aside on IP addresses: IPv4 addresses are only 32 bits long, which 

only makes for about 4 billion total IPs, which we’ve fully allocated; IPv6 
addresses, by contrast, are 128 bits long
• IPv4 addresses are often written in dotted quad format of 192.168.1.1
• IPv6 addresses are a little more complicated, but can be written as 

2607:f6d0:0:0:0:0:0:0 (which can also be written as 2607:f6d0::)
• Either way, IP addresses can be a little cumbersome to write, so we use DNS 

(domain name service) to map from domain names (e.g., 
web.stanford.edu) to IP addresses (e.g., 171.67.215.200)



TCP and UDP (continued)

• Quick aside on client server model: for the rest of the lecture, we’ll be 
implicitly referencing this model—the rough idea is that we have a server 
(imagine, e.g., Google) which serves data to one or more clients (imagine, 
e.g., people Googling)

• TCP and UDP both allow us to send arbitrary bytes over the network
• It is important that we send bytes in a way that both the client and server 

will understand
– A protocol specifies how the bytes will be interpreted
– IP and TCP/UDP level details specify that the network byte order 

should be big-endian (myth machines are little-endian)



TCP and UDP (continued)

• TCP provides a “reliable bytestream” abstraction (except in 
exceptional cases, the data will arrive correctly on the other side)
– Useful for non-time critical applications (e.g., web servers (HTTP prior to 

HTTP/3 runs over TCP), ssh, etc…)

• UDP provides an unreliable datagram abstraction (it’s effectively 
just a userspace wrapper around IP, hence “User Datagram 
Protocol”)
– Useful for time critical applications, or applications that can deal with some 

data loss (e.g., video conferencing, online gaming, etc…)



SOCKET PROGRAMMING BASICS



socket()

• int socket(int domain, int type, int protocol);

• The domain specifies what type of socket we want—for this lecture, it will 
be one of PF_INET or PF_INET6

• The type for this lecture will always be SOCK_STREAM (meaning TCP, it 
could also be SOCK_DGRAM for UDP)

• The protocol is the protocol number (e.g., one of IPPROTO_TCP or 
IPPROTO_UDP, but we can use 0 since SOCK_STREAM means TCP, and 
it will figure it out)

• Returns a “file descriptor” on success and <0 on error (setting errno as 
appropriate)



Detour: file descriptors

• You may encounter the phrase “everything is a file” when working in a 
Unix/Linux context

• File descriptors are one incarnation of this—a FILE * is a convenient 
wrapper around a file descriptor
– A file descriptor is an integer that the OS hands to our process that we 

can use syscalls on to read/write data (e.g., read, write) or 
otherwise modify (e.g., fcntl)

– We’ll have the following file descriptors always by default: 0 (stdin), 
1 (stdout), 2 (stderr)

• Note that we use file descriptors for both real files and for sockets (among 
other things)



Detour: error handling
• At Adam’s request
• Many system calls (and wrapping C functions) can fail
• In C, we’ll often see failure represented as a negative value, with errno (see man errno) set 

appropriately (perror will print the corresponding error message)
– Basically every function today can fail in this manner

• In 107, we’ve mostly ignored this up until this point, but there are a few ways to handle this in C
– Explicitly check every return value that might fail, write out the failure condition
– Wrap functions in safe forms (e.g., the textbook creates Write from write)
– Use macros to help simplify
– gotos are often used for clean up, but given their potential for misuse, we won’t cover them to 

closely here
– On the (optional) sockets assignment, we’ll provide a few options for error handling (which you 

should be doing)



Detour: man pages

• While, in general, we like to tell you to read the manpage for 
the functions, the man pages for sockets programming tend to 
be comparatively more difficult to actually find and 
understand

• I would recommend using the fake man pages from 
https://beej.us/guide/bgnet/ and then consulting the real 
man pages later, as appropriate (and if necessary)

https://beej.us/guide/bgnet/


bind()

• “bind”s a socket to a particular address/port combo
• int bind(int sockfd, struct sockaddr 
*my_addr, int addrlen);

• Note, we tend to only use bind as a server (as a client, we 
tend not to actually care what our port is)



struct sockaddr

• struct sockaddr is the generic type for a socket address, but we’ll use 
struct sockaddr_in or struct sockaddr_in6 and cast to a 
struct sockaddr
struct sockaddr {
    unsigned short sa_family; // address family, AF_xxx
    char sa_data[14]; // 14 bytes of protocol address
};
struct sockaddr_in {
    short int sin_family; // Address family, AF_INET
    unsigned short int sin_port; // Port number
    struct in_addr sin_addr; // Internet address
    unsigned char sin_zero[8]; // Same size as struct sockaddr
};
struct in_addr {
    uint32_t s_addr; // that's a 32-bit int (4 bytes)
};
struct sockaddr_in6 {
    u_int16_t sin6_family; // address family, AF_INET6
    u_int16_t sin6_port; // port number, Network Byte Order
    u_int32_t sin6_flowinfo; // IPv6 flow information
    struct in6_addr sin6_addr; // IPv6 address
    u_int32_t sin6_scope_id; // Scope ID
};
struct in6_addr {
    unsigned char s6_addr[16]; // IPv6 address
};



inet_pton(), inet_addr(), and 
inet_aton()

• aton and addr only work for IPv4 addresses
• int inet_aton(const char *cp, struct 
in_addr *inp);

• in_addr_t inet_addr(const char *cp);
• cp is a string of a dotted quad IP address
• int inet_pton(int af, const char *src, 
void *dst);



getaddrinfo()

int getaddrinfo(const char *node, // e.g. "www.example.com" or IP
                const char *service, // e.g. "http" or port number
                const struct addrinfo *hints,
                struct addrinfo **res);

• Gives us a linked list of struct addrinfos
struct addrinfo {
    int ai_flags; // AI_PASSIVE, AI_CANONNAME, etc.
    int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
    int ai_socktype; // SOCK_STREAM, SOCK_DGRAM
    int ai_protocol; // use 0 for "any"
    size_t ai_addrlen; // size of ai_addr in bytes
    struct sockaddr *ai_addr; // struct sockaddr_in or _in6
    char *ai_canonname; // full canonical hostname
    struct addrinfo *ai_next; // linked list, next node
};



bind()

• int bind(int sockfd, struct sockaddr 
*my_addr, int addrlen);

• Binds our socket to the address and port specified by 
my_addr

• We will often use INADDR_ANY to indicate that we want to 
accept any IPv4 connection (slightly different for IPv6, see 
“Jumping from IPv4 to IPv6” on Beej’s guide)



listen()

• int listen(int sockfd, int backlog);
• Starts our socket “listening” (what a server would do)
• backlog is how many outstanding requests can be queued 

until we accept them



accept()

• int accept(int sockfd, struct sockaddr *addr, socklen_t 
*addrlen);

• Returns a file descriptor for a remote connection
• We’ll use a struct sockaddr_storage (guaranteed large enough to store any 

address) for the address

struct sockaddr_storage {
  sa_family_t ss_family; // address family
  // all this is padding, implementation specific, ignore it:
  char __ss_pad1[_SS_PAD1SIZE];
  int64_t __ss_align;
  char __ss_pad2[_SS_PAD2SIZE];
};



connect()

• int connect(int sockfd, struct sockaddr 
*serv_addr, int addrlen);

• Useful for the client, connects our local socket to the remote 
address



send()

• int send(int sockfd, const void *msg, int 
len, int flags);

• Returns how many bytes were actually sent (may be less than 
we requested, which we’ll have to handle)

• flags can be 0 by default
• Note that while we could use write, we tend to use send 

instead since it lets us to more specific socket things (see the 
man page for flags)



recv()

• int recv(int sockfd, void *buf, int len, 
int flags);

• Returns how many bytes were received (no more than len)
• Returns <0 on error, 0 when remote side has closed



close()

• close(sockfd);
• Prevents any further reads or writes to the socket, the remote 

peer will receive an error on trying to read or write
• Also, marks the fd as usable again (no longer counts toward 

our per-process limit)



shutdown()

• int shutdown(int sockfd, int how);
• Note that you will still have to close eventually

how Effect

0 Further receives are disallowed

1 Further sends are disallowed

2 Further sends and receives are 
disallowed (like close())



CODE DEMO



Handling multiple clients

• We may not get to this in lecture, but you should investigate 
using select() and/or poll() (or epoll if you want to 
get really fancy) for the assignment


