CS107, Lecture 21

Reverse Engineering

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

(: :*) Creative Commons Attribution 2.5 License. All rights reserved.

U l I laS kS re CO I I I l I I e n d ed Based on slides created by Cynthia Lee,.Chris Gregg, Jerry Cain, Lisa Yan and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

Reverse
Engineering,
Privacy and

Trust / assign5

This
Lecture

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

Learning Goals

* Learn how to approach reverse engineering executables
* Understand the requirements and tasks for assign5

Lecture Plan

* GDB / Function Call Practice: Recursion
* Reverse Engineering Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect21 .

Lecture Plan

* GDB / Function Call Practice: Recursion
* Reverse Engineering Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect21 .

Example: Recursion

* Let’s look at an example of recursion at the assembly level.

* We'll use everything we’ve learned about registers, the stack, function calls,
parameters, and assembly instructions!

* We'll also see how helpful GDB can be when tracing through assembly.

>

factorial.c and factorial 6

gdb tips). 0.8

(ctrl-x a: exit,

layout split (¢r1-1: resize, View C, assembly, and gdb (lab5)
info reg refresh: refresh, Print all registers
layout reg/asm,
focus next)
p $eax Print register value
p $eflags Print all condition codes currently set
b *0x400546 Set breakpoint at assembly instruction
b *0x400550 if $eax > 98 Set conditional breakpoint
ni Next assembly instruction
si Step into assembly instruction (will step

into function calls) 7

gdb tips). 0.8

p/X $rdi
p/t $rsi

X $rdi
x/4bx $rdi
X/4wx $rdi

finish

Print register value in hex
Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

Finish function, return to caller

Lecture Plan

 GDB / Function Call Practice: Recursion
* Reverse Engineering Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect21 .

You are a security researcher hired to explore potential vulnerabilities and issues
at Stanford Bank. 3 core parts:

1. Uncovering ATM software vulnerabilities

Demonstrating how a data leak can lead to data aggregation and
uncovering of personal information

3. Reverse engineering a secure program — discover 4 passwords needed to
gain access to the system

10

The minivault program is practice for part 3, SecureVault (it doesn't share code
with SecureVault but is similar reverse-engineering practice).

You must provide correct passwords for 2 stages:
./minivault [stagelpassword] [stage2password]

stagel and stage2 are 2 functions in minivault, each passed in the password
for that stage. Our goal is to get both to return 1, and not O.

11

Reverse Engineering Tips

. Run the program live in GDB and step through. Reading and diagramming

by hand is useful, but quickly becomes infeasible with larger programs.

2. Break the assembly into chunks

. Use gdb to verify your hypotheses.

. Document your knowns and unknowns. Document and re-verify conflicting

assumptions.

. Use compiler explorer to see what code looks like in assembly.

. Use library functions to your advantage. If you spot a call to what looks like

a library function, it's the real deal.

. When tracing an unknown function, before dissecting its behavior first

learn about the input/output of the function and what role it plays.

12

Demo: Minivault

Recap

* GDB / Function Call Practice: Lecture 21 takeaway: Reverse
Recursion engineering lets us understand the
* Reverse Engineering Practice: behavior of a program without seeing
Minivault its source code. Check out slide 12
for some summarized tips!

cp -r /afs/ir/class/cs107/lecture-code/lect21 .

14

