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CS107, Lecture 24
Explicit Free List Allocator

Reading: B&O 9.9, 9.11, 5 (Optimization)

😷 masks recommended
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CS107 Topic 6
How do the core malloc/realloc/free memory-allocation operations work?

Why is answering this question important?
• Combines techniques from across the quarter (bits/bytes, pointers, memory, 

generics, assembly, efficiency, testing, and more) to understand a real-world 
system that you have relied on all quarter!
• Learning about the design and tradeoffs in a real-world large system gives us a 

great example of how to evaluate different designs when there’s no one 
“right” answer.

assign6: implement two different possible designs for a heap allocator, implementing 
malloc/realloc/free.
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Learning Goals
• Learn about how we can implement coalescing of blocks and in-place realloc
• Understand the tradeoffs between bump, implicit and explicit free list 

allocators
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Lecture Plan
• Recap: heap allocators so far
• Method 2: Explicit Free List Allocator 
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Lecture Plan
• Recap: heap allocators so far
• Method 2: Explicit Free List Allocator 
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Bump Allocator
• A bump allocator is a heap allocator design that simply allocates the next 

available memory address upon an allocate request and does nothing on a free 
request.
• Throughput: each malloc and free execute only a handful of instructions:

• It is easy to find the next location to use
• Free does nothing!

• Utilization: we use each memory block at most once.  No freeing at all, so no 
memory is ever reused. L 
• We provide a bump allocator implementation as part of the final assignment 

as a code reading exercise.
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Implicit Free List Allocator
For all blocks,
• Have a header that

stores size and status.
• Our list links all blocks,

allocated (A) and free (F).

Keeping track of free blocks:
• Improves memory utilization (vs bump allocator)
• Decreases throughput (worst case allocation request has O(A + F) time)
• Increases design complexity J

Header (8B)

Block size 00X

alloc/free

0363
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Final Assignment: Implicit Allocator
• Must have headers that track block information (size, status in-use or free) –

you must use the 8 byte header size, storing the status using the free bits (this 
is larger than the 4 byte headers specified in the book, as this makes it easier 
to satisfy the alignment constraint and store information).
• Must have free blocks that are recycled and reused for subsequent malloc 

requests if possible
• Must have a malloc implementation that searches the heap for free blocks via 

an implicit list (i.e. traverses block-by-block).

• Does not need to have coalescing of free blocks
• Does not need to support in-place realloc
(Note: these could be part of an implicit allocator, it’s just not a requirement for this assignment)
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Lecture Plan
• Recap: heap allocators so far
• Method 2: Explicit Free List Allocator

• Explicit Allocator 
• Coalescing 
• In-place realloc 
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Explicit Free List Allocator
• This design builds on the implicit allocator, but also stores pointers to the next 

and previous free block inside each free block’s payload.
• When we allocate a block, we look through just the free blocks using our linked 

list to find a free one, and we update its header and the linked list to reflect its 
allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free and 

update the linked list.

This explicit list of free blocks increases 
request throughput, with some costs 
(design and internal fragmentation)
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Explicit Free List Allocator
• Key Insight: the payloads of the free blocks aren’t being used, because they’re 

free.  
• Idea: since we only need to store these pointers for free blocks, let’s store 

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24 

Used
32

Free 0x10 null

0x10
First free block
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Explicit Free List: List Design
How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.)

Better memory util, 
Linear free

Constant free (push 
recent block onto stack)

(more at end of lecture)

Up to you!
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Explicit free list design
How do you want to organize your explicit free list?(utilization/throughput)
A. Address-order 

B. Last-in first-out (LIFO)

C. Other (e.g., by size, etc.)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68 0x70 0x78 0x80

16
Free 0x70 0x40 16 

Used
16

Free 0x10 null 16
Used

16
Free null 0x10

Better memory util, linear free

Constant free (push recent block onto stack)

(see textbook)

Up to you!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24 

Used
32

Free 0x10 null
0x10

First free 
block

0x70

First free 
block
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Implicit vs. Explicit: So Far
Implicit Free List
• 8B header for size + alloc/free status

• Allocation requests are worst-case 
linear in total number of blocks
• Implicitly address-order

Explicit Free List
• 8B header for size + alloc/free status
• Free block payloads store prev/next 

free block pointers

• Allocation requests are worst-case 
linear in number of free blocks
• Can choose block ordering
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?
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Lecture Plan
• Recap: heap allocators so far
• Method 2: Explicit Free List Allocator

• Explicit Allocator 
• Coalescing 
• In-place realloc 
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

64
Free
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 40

Free
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Free
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Used c
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Free b + pad 16
Used c
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

We have enough memory space, but 
it is fragmented into free blocks 
sized from earlier requests!

We’d like to be able to merge 
adjacent free blocks back together.
How can we do this?
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

Hey, look!  I have a free 
neighbor.  Let’s be 

friends! J
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c

Hey, look!  I have a free 
neighbor.  Let’s be 

friends! J
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

The process of combining adjacent 
free blocks is called coalescing.

For your explicit heap allocator only 
(not required for implicit), you 
should coalesce if possible when a 
block is freed.  You only need to 
coalesce the most immediate right 
neighbor.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c
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Practice 1: Explicit (coalesce)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Used B 16

Free
16

Used A
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Practice 1: Explicit (coalesce)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Used B 16

Free
16

Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Free

16
Used A
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?  Yes!  We 

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?  Yes!  We 

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?
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Lecture Plan
• Recap: heap allocators so far
• Method 2: Explicit Free List Allocator

• Explicit Allocator 
• Coalescing 
• In-place realloc 
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Realloc
• For the implicit free list allocator, we didn’t worry too much about realloc.  We 

always moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place.  How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.



34

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

a’s earlier request was too small, so 
we added padding.  Now they are 
requesting a larger size we can 
satisfy with that padding!  So realloc 
can return the same address.
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Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

If a realloc is requesting to shrink, 
we can still use the same starting 
address.  

If we can, we should try to recycle 
the now-freed memory into another 
freed block.
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Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a 24

Free a 16
Free

If a realloc is requesting to shrink, 
we can still use the same starting 
address.  

If we can, we should try to recycle 
the now-freed memory into another 
freed block.
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Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

Even with the padding, we don’t 
have enough space to satisfy the 
larger size.  But we have an adjacent 
neighbor that is free – let’s team up!
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Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

Even with the padding, we don’t 
have enough space to satisfy the 
larger size.  But we have an adjacent 
neighbor that is free – let’s team up!

Now we can still return the same 
address.
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Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a + pad 16

Free
24

Free

For your project (explicit only), you 
should combine with your right 
neighbors as much as possible until 
we get enough space, or until we 
know we cannot get enough space.
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Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

40
Used a 24

Free

For your project (explicit only), you 
should combine with your right 
neighbors as much as possible until 
we get enough space, or until we 
know we cannot get enough space.
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Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

For your project (explicit only), you 
should combine with your right 
neighbors as much as possible until 
we get enough space, or until we 
know we cannot get enough space.
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Realloc
• For the implicit free list allocator, we didn’t worry too much about realloc.  We 

always moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place.  How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

• If you can’t do an in-place realloc, then you should move the data elsewhere.
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Practice 1: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B
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Practice 1: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

24
Used A 24

Free
16

Used B
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Practice 2: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Free

🤔

Input your answer on PollEv: 
pollev.com/cs107 or text CS107 to 
22333 once to join.
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Practice 2: Explicit: Options

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

80
Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 8

Free
16

Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 8

Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Free
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Practice 2: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Free
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Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B
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Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following 
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

For the explicit allocator, note that 
we can’t have payload less than 16 
bytes, so here the only option for 
the leftover 8 bytes is to use it as 
padding for the existing block.
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Heap metadata

Going beyond: Explicit list w/size buckets
• Explicit lists are much faster than implicit lists.
• However, a first-fit placement policy is still linear in total # of free blocks.
• What about an explicit free list sorted by size (e.g., as a tree)?
• What about several explicit free lists bucketed by size? (below)

small
medium

large
jumbo

Heap 
memory

Read B&O Section 9.9.14!
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In the wild: glibc allocator
• https://sourceware.org/glibc/wiki/MallocInternals 

Footer/Boundary tag (see textbook)

https://sourceware.org/glibc/wiki/MallocInternals
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Final Assignment: Explicit Allocator
• Must have headers that track block information like in implicit (size, status in-

use or free) – you can copy from your implicit version
• Must have an explicit free list managed as a doubly-linked list, using the first 

16 bytes of each free block’s payload for next/prev pointers.
• Must have a malloc implementation that searches the explicit list of free 

blocks.
• Must coalesce a free block in free() whenever possible with its immediate right 

neighbor. (only required for explicit)
• Must do in-place realloc when possible (only required for explicit).  Even if an 

in-place realloc is not possible, you should still absorb adjacent right free 
blocks as much as possible until you either can realloc in place or can no longer 
absorb and must realloc elsewhere.
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Final Project Tips
Read B&O textbook.
• Offers some starting tips for implementing your heap allocators.
• Make sure to cite any design ideas you discover.
Honor Code/collaboration
• All non-textbook code is off-limits.
• Please do not discuss discuss code-level specifics with others.
• Your code should be designed, written, and debugged by you 

independently.
Helper Hours
• We will provide good debugging techniques and strategies!
• Come and discuss design tradeoffs!

⭐⭐⭐
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Recap
• Recap: heap allocators so far
• Method 2: Explicit Free List Allocator

 

Next time: optimization

Lecture 24 takeaway: The explicit 
free list allocator uses headers and 
also stores pointers to free blocks in 
free block payloads.  Allocators can 
support techniques like realloc-in-
place and coalesce-on-free (both only 
required for your explicit allocator) to 
try and better handle requests.


