
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, Jerry Cain and others.

1

CS107 Lecture 3
Byte Ordering & Bitwise

Operators

reading:
Bryant & O’Hallaron, Ch. 2.1

Where we left off

Comparison between signed and unsigned integers
When a C expression has combinations of signed and unsigned variables, you
need to be careful!

If an operation is performed that has both a signed and an unsigned value, C
implicitly casts the signed argument to unsigned and performs the
operation assuming both numbers are non-negative. Let's take a look…

Expression Type Evaluation
0 == 0U Unsigned 1
-1 < 0 Signed 1
-1 < 0U Unsigned 0
2147483647 > -2147483647 - 1 Signed 1
2147483647U > -2147483647 - 1 Unsigned 0
2147483647 > (int)2147483648U Signed 1
-1 > -2 Signed 1
(unsigned)-1 > -2 Unsigned 1
Note: In C, 0 is false and everything else is true. When C produces a boolean value, it allways chooses 1 to represent true.

Comparison between signed and unsigned integers
Let's try some more…a bit more abstractly.

int s1, s2, s3, s4;
unsigned int u1, u2, u3, u4;

What is the value of this
expression?

u1 > s3

Go to
 https://pollev.com/cs107summer

https://pollev.com/cs107summer

Overflow

0 1
2

8 7
10

9

13

15
14

11

12 4

5
6

3

• What is happening here? Assume 4-bit numbers.

0b1101
+ 0b0100

5

Overflow
• What is happening here? Assume 4-bit numbers.

0b1101
+ 0b0100 0 1

2

8 79
10

13

15
14

11

12 4

5
6

3

Signed

-3 + 4 = 1

No overflow

6

Unsigned

13 + 4 = 1

Overflow

Limits and Comparisons
1. What is

the…

These are available as
UCHAR_MAX, INT_MIN,
INT_MAX, etc. in the
<limits.h> header.

Largest unsigned?

7

Largest signed? Smallest signed?

char

int

28 - 1 = 255 27 – 1 = 127 -27 = -128

232 - 1 =
4294967296

231 - 1 =
2147483647

-231 =
-2147483648

Limits and Comparisons

8

2. Will the following char comparisons evaluate to true or false?
i. -7 < 4

ii. -7 < 4U

iii. (char) 130 > 4

iv. (char) -132 > 2

By default, numeric constants in C are signed ints, unless they are
suffixed with u (unsigned) or L (long).

The sizeof Operator

9

long sizeof(type);

// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1

sizeof takes a variable type as a parameter and returns the size of that type, in
bytes.

MIN and MAX values for integers
Because we now know how bit patterns for integers works, we can figure out the
maximum and minimum values, designated by INT_MAX, UINT_MAX, INT_MIN,
(etc.), which are defined in limits.h

Type
Width
(bytes)

Width
(bits) Min in hex (name) Max in hex (name)

char 1 8 80 (CHAR_MIN) 7F (CHAR_MAX)

unsigned char 1 8 0 FF (UCHAR_MAX)

short 2 16 8000 (SHRT_MIN) 7FFF (SHRT_MAX)

unsigned short 2 16 0 FFFF (USHRT_MAX)

int 4 32 80000000 (INT_MIN) 7FFFFFFF (INT_MAX)

unsigned int 4 32 0 FFFFFFFF (UINT_MAX)

long 8 64 8000000000000000 (LONG_MIN) 7FFFFFFFFFFFFFFF (LONG_MAX)

unsigned long 8 64 0 FFFFFFFFFFFFFFFF (ULONG_MAX)

Min and Max Integer Values

11

• You can also find constants in the standard library that define the
max and min for each type on that machine(architecture)

• Visit <limits.h> or <cstdint.h> and look for variables like:
 INT_MIN
 INT_MAX
 UINT_MAX
 LONG_MIN
 LONG_MAX
 ULONG_MAX
 …

Expanding Bit Representations

12

• Sometimes, we want to convert between two integers of different sizes (e.g.
short to int, or int to long).
• We might not be able to convert from a bigger data type to a smaller data

type, but we do want to always be able to convert from a smaller data type to
a bigger data type.
• For unsigned values, we can add leading zeros to the representation (“zero

extension”)
• For signed values, we can repeat the sign of the value for new digits (“sign

extension”
• Note: when doing <, >, <=, >= comparison between different size types, it will

promote to the larger type.

Expanding the bit representation of a number
For signed values, we want the number to remain the same, just with more
bits. In this case, we perform a "sign extension" by repeating the sign of the
value for the new digits. E.g.,

a 16-bit format, so
short s = 4;
// short is

int i = s;

s = 0000 0000 0000 0100b

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;
// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;
// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

Converting from a smaller type to a larger type is also often called promotion
I.E. the number was promoted from short to int

Sign-extension Example
// show_bytes() defined on pg. 45, Bryant and O'Halloran
int main() {
 short sx = -12345; // -12345
 unsigned short usx = sx; // 53191
 int x = sx; // -12345
 unsigned ux = usx; // 53191

 printf("sx = %d:\t", sx);
 show_bytes((byte_pointer) &sx, sizeof(short));
 printf("usx = %u:\t", usx);
 show_bytes((byte_pointer) &usx, sizeof(unsigned short));
 printf("x = %d:\t", x);
 show_bytes((byte_pointer) &x, sizeof(int));
 printf("ux = %u:\t", ux);
 show_bytes((byte_pointer) &ux, sizeof(unsigned));

 return 0;
}

$./sign_extension
sx = -12345: c7 cf
usx = 53191: c7 cf
x = -12345: c7 cf ff ff
ux = 53191: c7 cf 00 00

(careful: this was
printed on the little-
endian myth machines!)

Truncating Numbers: Signed
What if we want to reduce the
number of bits that a number
holds? E.g.

// 53191
x; // -12345

int x
short
int y

= 53191;
sx = (short)
= sx;

This is a form of overflow! We have altered the value of the number.
Be careful!

We don't have enough bits to store the int in the short for the value we have
in the int, so the strange values occur.

What is y above? We are converting a short to an int, so we sign-extend,
and we get -12345!

1100 1111 1100 0111 becomes

1111 1111 1111 1111 1100 1111 1100 0111
Play around here: http://www.convertforfree.com/twos-complement-calculator/

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Signed
If the number does fit into the
smaller representation in the
current form, it will convert just
fine.

// -3
-3; // -3

int x
short
int y

= -3;
sx = (short)
= sx; // -3

x: 1111 1111 1111 1111 1111 1111 1111 1101 becomes
sx: 1111 1111 1111 1101

Play around here: http://www.convertforfree.com/twos-complement-calculator/

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Unsigned
We can also lose information with
unsigned numbers:

unsigned
unsigned
unsigned

int x
short
int y

= 128000;
sx = (short) x;
= sx;

Bit representation for x = 128000 (32-bit unsigned int):

0000 0000 0000 0001 1111 0100 0000 0000

Truncated unsigned short sx:

1111 0100 0000 0000

which equals 62464 decimal.

Converting back to an unsigned int, y = 62464

Overflow In Practice: PSY

YouTube: “We never thought a video would be watched in numbers
greater than a 32-bit integer (=2,147,483,647 views), but that was before
we met PSY. "Gangnam Style" has been viewed so many times we had to
upgrade to a 64-bit integer (9,223,372,036,854,775,808)!”

19

Overflow in Signed Addition
In the news on January 5, 2022 (!):

https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-
that-stopped-user-from-calling-911/

Overflow in Signed Addition
Signed overflow wraps around to the negative numbers.

$./signed_overflow
a = 2147483647
b = 1
a + b = -2147483648

#include<stdio.h>
#include<stdlib.h>
#include<limits.h> // for INT_MAX

int main() {
 int a = INT_MAX;
 int b = 1;
 int c = a + b;

 printf("a = %d\n",a);
 printf("b = %d\n",b);
 printf("a + b = %d\n",c);

 return 0;
}

Technically, signed integers in C produce
undefined behavior when they overflow. On two's
complement machines (virtually all machines these
days), it does overflow predictably. You can test
to see if your addition will be correct:

// for addition
#include <limits.h>
int a = <something>;
int x = <something>;
if ((x > 0) && (a > INT_MAX - x)) /* `a + x` would overflow */;
if ((x < 0) && (a < INT_MIN - x)) /* `a + x` would underflow */;

Overflow

At which points can overflow occur for
signed and unsigned int? (assume binary values
shown are all 32 bits)

A. Signed and unsigned can both overflow
at points X and Y

B. Signed can overflow only at X, unsigned
only at Y

C. Signed can overflow only at Y, unsigned
only at X

D. Signed can overflow at X and Y,
unsigned only at X

E. Neither.

X

Y

000…000
000…001

22

000…010
000…011

111…111
111…110

111…101
111…100

100…010
100…001

100…000

011…101
011…110

011…111

……

Go to
 https://pollev.com/cs107summer

https://pollev.com/cs107summer

Overflow In Practice: Timestamps

23

• Many systems store timestamps as the number of seconds since Jan. 1, 1970
in a signed 32-bit integer.
• Problem: the latest timestamp that can be represented this way is 3:14:07 UTC

on Jan. 13 2038!

Overflow In Practice: Gandhi
• In the game “Civilization”, each

civilization leader had an
“aggression” rating. Gandhi was
meant to be peaceful, and had a
score of 1.
• If you adopted “democracy”, all

players’ aggression reduced by 2.
Gandhi’s went from 1 to 255!
• Gandhi then became a big fan of

nuclear weapons.

24

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

Overflow in Practice:

25

• Pacman Level 256
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to

remotely execute code
• Donkey Kong Kill Screen

printf and Integers

26

• There are 3 placeholders for 32-bit integers that we can use:
• %d: signed 32-bit int
• %u: unsigned 32-bit int
• %x: hex 32-bit int

• The placeholder—not the expression filling in the placeholder—dictates
what gets printed!

Casting

27

• What happens at the byte level when we cast between variable types? The
bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951". Why?

Casting

28

• What happens at the byte level when we cast between variable types? The
bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

The bit representation for -12345 is
0b11111111111111111100111111000111.
If we treat this binary representation as a positive number, it’s huge!

Practice: Two’s Complement
Fill in the below table:

char x = ;
decimal binary

29

char y = -x;
decimal binary

0b1111 1100

0b0001 1000

0b0010 0100

1.

2.

3.

4. 0b1101 1111

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

Practice: Two’s Complement
Fill in the below table:

char x = ; char y = -x;
decimal binary decimal binary

1. -4 0b1111 1100 4 0b0000 0100

2. 0b0001 1000

3. 0b0010 0100

4. 0b1101 1111

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

30

Practice: Two’s Complement
Fill in the below table:

char y = -x;
decimal binary

31

1.

2.

3.

4.

4

-24

-36

33

0b0000 0100

0b1110 1000

0b1101 1100

0b0010 0001

char x = ;
decimal binary

-4 0b1111 1100

24 0b0001 1000

36 0b0010 0100

-33 0b1101 1111

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

Addressing and Byte Ordering
Every variable holds a value stored in memory.

A non-pointer variable (quietly) stores the address to that location in memory.

This means that when we use that variable it gives us the value at that location

A pointer (quietly) stores a location in memory, however the value at the location is
another address.

 Regardless of whether we are storing a value or an address, it is quite common for
us to need more than one byte.

Addressing and Byte Ordering
The int type on our machines is 4 bytes long. So, how do we store 4 bytes, if

memory is only byte-addressable?

We store it contiguously (back-to-back)!

That still leaves us with an important question, which way to go?
Right -> Left or Left -> Right?

We call this question the Endianness of the number

Lets begin by representing an int as an 8-digit hex numbers:

0x01234567

We can then separate out the bytes (remember 2 hex digits is 8 bits or 1 byte):
0x 01 23 45 67

Addressing and Byte Ordering
01 23 45 67

0000 0001 0010 0011 0100 0101 0110 0111

most significant least significant

•Some machines choose to store the bytes ordered from least significant byte to
most significant byte, called “little endian” (because the “little end” comes first).

• Other machines choose to store the bytes ordered from most significant byte to
least significant byte, called “big endian” (because the “big end” comes first).

Addressing and Byte Ordering
• Our 0x 01 23 45 67 number would look like this in memory for a little endian

computer (which, by the way, is the way the myth computers store ints):

• A big-endian representation would look like this:

byte:
address:

Many times we don’t care how our integers are stored, but in cs107 we will! Let’s look
at a sample program and dig under the hood to see how little-endian works.

67 45 23 01
0x100 0x101 0x102 0x103

byte:
address:

01 23 45 67
0x100 0x101 0x102 0x103

Addressing and Byte Ordering

1 #include<stdio.h>
2 #include<stdlib.h>
3
4 int
5

main() {
// a variable

6 int a = 0x01234567;

7

8 // print the variable in big endian format

9 printf("a's value: 0x%.8x\n",a);

10 return 0;

11 }

GDB as an Interpreter

37

• gdb live_session run gdb on live_session executable
• p print variable (p varname) or evaluated expression (p 3L << 10)
• p/t, p/x
• p/d, p/u, p/c

• <enter>
• q

binary and hex formats.

Execute last command again
Quit gdb

Important When first launching gdb:
• Gdb is not running any program and therefore can’t print variables
• It can still process operators on constants

gdb on a program

38

• gdb live_session
• b

run gdb on executable
Set breakpoint on a function (e.g., b main)

or line (b 42)
Run with provided args

control forward execution (next, step into, continue)
• r 82
• n, s, continue
• p print variable (p varname) or evaluated expression (p 3L << 10)
• p/t, p/x
• p/d, p/u, p/c

• info

binary and hex formats.

args, locals

Important: gdb does not run the current line until you hit “next”

gdb: highly recommended

39

At this point, setting breakpoints/stepping in gdb may seem like overkill for what
could otherwise be achieved by copious printf statements.
However, gdb is incredibly useful for assign1 (and all assignments):
• A fast “C interpreter”: p + <expression>
• Sandbox/try out ideas around bitshift operators, signed/unsigned types, etc.
• Can print values out in binary!
• Once you’re happy, then make changes to your C file

• Tip: Open two terminal windows and SSH into myth in both
• Keep one for emacs, the other for gdb/command-line
• Easily reference C file line numbers and variables while accessing gdb

• Tip: Every time you update your C file, make and then rerun gdb.
Gdb takes practice! But the payoff is tremendous! ©

I've seen a few students who have been frustrated with stepping through functions in gdb.
Sometimes, they will accidentally step into a function like strlen or printf and get stuck.

There are three important gdb commands about stepping through a program:

step (abbreviation: s) : executes the next line and goes into function calls.

next (abbreviation: n) : executes the next line, and does not go into function calls. I.e., if you
want to run a line with strlen or printf but don't want to attempt to go into that function,
use next.

display (abbreviation: disp) : displays a variable (or other item) after each step.

finish (abbreviation: fin) : completes a function and returns to the calling function. This is the
command you want if you accidentally go into a function like strlen or printf! This
continues the program until the end of the function, putting you back into the calling function3 .

gdb step, next, finish

Bitwise Operations

Bitwise Operators

4
2

• You’re already familiar with many operators in C:
• Arithmetic operators: +, -, *, /, %
• Comparison operators: ==, !=, <, >, <=, >=
• Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: bitwise operators:
• &, |, ~, ^, <<, >>

And (&)

4
3

AND is a binary operator. The AND of 2 bits is 1 if both bits are 1, and 0
otherwise.

output = a & b;
a b output
0 0 0
0 1 0
1 0 0
1 1 1

& with 1 to let a bit through, & with 0 to zero out a bit

Or (|)

44

OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

output = a | b;
a b output
0 0 0
0 1 1
1 0 1
1 1 1

| with 1 to turn on a bit, | with 0 to let a bit go through

Not (~)

45

NOT is a unary operator. The NOT of a bit is 1 if the bit is 0, or 1 otherwise.

output = ~a;
a output

0 1

1 0

Exclusive Or (^)

46

Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly one of
the bits is 1, or 0 otherwise.

output = a ^ b;
a b output
0 0 0
0 1 1
1 0 1
1 1 0

^ with 1 to flip a bit, ^ with 0 to let a bit go through

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:
AND OR XOR NOT

0110 0110 0110
& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

Note: these are different from the logical
operators AND (&&), OR (||) and NOT (!).

47

13

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:
AND OR XOR NOT

0110 0110 0110
& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

This is different from logical AND (&&). The logical
AND returns true if both are nonzero, or false
otherwise. With &&, this would be 6 && 12,
which would evaluate to true (1).

14

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:
AND OR XOR NOT

0110 0110 0110
& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

This is different from logical OR (||). The logical
OR returns true if either are nonzero, or false
otherwise. With ||, this would be 6 || 12, which
would evaluate to true (1).

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:
AND OR XOR NOT

0110 0110 0110
& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

This is different from logical NOT (!). The logical NOT
returns true if this is zero, and false otherwise. With !,
this would be !12, which would evaluate to false (0).

50

Bit Vectors and Sets

51

• We can use bit vectors (ordered collections of bits) to represent finite sets, and
perform functions such as union, intersection, and complement.
• Example: we can represent current courses taken using a char.

0 0 1 0 0 0 1 1

CS10
6A

CS10
6B

CS10
6X

CS10
7

CS11
0

CS10
3

CS10
9

CS16
1

Bit Vectors and Sets

• How do we find the union of two sets of courses taken? Use OR:

00100011
| 01100001

01100011

52

0 0 1 0 0 0 1 1

CS10
6A

CS10
6B

CS10
6X

CS10
7

CS11
0

CS10
3

CS10
9

CS16
1

Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken? Use AND:

00100011
& 01100001

00100001

53

0 0 1 0 0 0 1 1

CS10
6A

CS10
6B

CS10
6X

CS10
7

CS11
0

CS10
3

CS10
9

CS16
1

Bit Masking
• We will frequently want to manipulate or isolate out specific bits in a larger

collection of bits. A bitmask is a constructed bit pattern that we can use, along
with bit operators, to do this.
• Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
| 00001000

00101011
54

0 0 1 0 0 0 1 1

CS10
6A

CS10
6B

CS10
6X

CS10
7

CS11
0

CS10
3

CS10
9

CS16
1

Bit Masking

55

#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107

Bit Masking

56

#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107

23

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS10
6A

CS10
6B

CS10
6X

CS10
7

CS11
0

CS10
3

CS10
9

CS16
1

char myClasses = ...;
myClasses = myClasses & ~CS103; // Remove CS103

24

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS10
6A

CS10
6B

CS10
6X

CS10
7

CS11
0

CS10
3

CS10
9

CS16
1

char myClasses = ...;
myClasses &= ~CS103; // Remove CS103

25

Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010

00000010

0 0 1 0 0 0 1 1

CS10
6A

CS10
6B

CS10
6X

CS10
7

CS11
0

CS10
3

CS10
9

CS16
1

char myClasses = ...;
if (myClasses & CS106B) {...

// taken CS106B!

Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS10
6A

CS10
6B

CS10
6X

CS10
7

CS11
0

CS10
3

CS10
9

CS16
1

00100011
& 00001000

00000000

char myClasses = ...;
if (!(myClasses & CS107)) {...

// not taken CS107! 60

Bit Masking

// not taken CS107! 61

• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS10
6A

CS10
6B

CS10
6X

CS10
7

CS11
0

CS10
3

CS10
9

CS16
1

char myClasses = ...;
if ((myClasses & CS107) ^ CS107) {...

00100011 00000000
& 00001000 ^ 00001000

00000000 00001000

Left Shift (<<)

62

The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the
left. New lower order bits are filled in with 0s, and bits shifted off the end are
lost.

x << k;
x <<= k;

// evaluates to x shifted to the left by k
bits
// shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000

Right Shift (>>)

63

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;
x >>= k;

// evaluates to x shifted to the right by k
bits
// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = 2;
x >>= 1;

// 0000 0000 0000 0010
// 0000 0000 0000 0001

printf("%d\n", x); // 1

Right Shift (>>)

64

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;
x >>= k;

// evaluates to x shifted to the right by k
bit
// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 0111 1111 1111 1111
printf("%d\n", x); // 32767!

Right Shift (>>)

65

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;
x >>= k;

// evaluates to x shifted to the right by k
bit
// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let’s fill with the sign bit!

Right Shift (>>)

66

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;
x >>= k;

// evaluates to x shifted to the right by k
bit
// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = 2;
x >>= 1;

// 0000 0000 0000 0010
// 0000 0000 0000 0001

printf("%d\n", x); // 1

Right Shift (>>)

67

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;
x >>= k;

// evaluates to x shifted to the right by k
bit
// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 1111 1111 1111 1111
printf("%d\n", x); // -1!

Right Shift (>>)

68

There are two kinds of right shifts, depending on the value and type you are
shifting:
• Logical Right Shift: fill new high-order bits with 0s.
• Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift.
Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!

Shift Operation Pitfalls

69

1. Technically, the C standard does not precisely define whether a right shift for
signed integers is logical or arithmetic. However, almost all
compilers/machines use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky! For example:

1<<2 + 3<<4 means 1 << (2+3) << 4 because addition and
subtraction have higher precedence than shifts! Always use parentheses
to be sure:

(1<<2) + (3<<4)

Bit Operator Pitfalls

70

• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work! 1 is by default an int, and you can’t shift an int by 32
because it only has 32 bits. You must specify that you want 1 to be a long.

long num = 1L << 32;

Bitwise Warmup
How can we use bitmasks + bitwise operators to…

0b00001101

1. …turn on a particular
set of bits?

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits?

0b00001101 0b00001101 0b00001101

0b00001111 0b00001001 0b00001011
71

Bitwise Warmup
How can we use bitmasks + bitwise operators to…

0b00001101

1. …turn on a particular
set of bits?

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits? XOR

0b00001101 0b00001101 0b00001101
0b00000010 | 0b11111011 & 0b00000110 ^

OR

0b00001111 0b00001001 0b00001011
72

AND

More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that turns on the i-th bit of a number for any i (0, 1, 2, …, 63)?

• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the
rest of the bits the same)?

long x = 0b1010010;

73

More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that turns on the i-th bit of a number for any i (0, 1, 2, …, 63)?

x | (1L << i)

• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the
rest of the bits the same)?

x & (-1L << i)

long x = 0b1010010;

74

On your own

75

• Print a variable
• Print (in binary, then in hex) result of left-shifting 14 and 32 by 4 bits.
• Print (in binary, then in hex) result of subtracting 1 from 128

1 << 32
• Why is this zero? Compare with 1 << 31.
• Print in hex to make it easier to count zeros.

References and Advanced Reading

•References:
•Two's complement calculator: http://www.convertforfree.com/twos-complement-
calculator/

•Wikipedia on Two's complement: https://en.wikipedia.org/wiki/
Two%27s_complement

• The sizeof operator: http://www.geeksforgeeks.org/sizeof-operator-c/

•Advanced Reading:
•Signed overflow: https://stackoverflow.com/questions/16056758/c-c-unsigned-
integer-overflow

•Integer overflow in C: https://www.gnu.org/software/autoconf/manual/
autoconf-2.62/html_node/Integer-Overflow.html

•https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-
truncated-how-is-the-new-value-determined

http://www.convertforfree.com/twos-complement-
http://www.geeksforgeeks.org/sizeof-operator-c/
http://www.gnu.org/software/autoconf/manual/
http://www.gnu.org/software/autoconf/manual/

References and Advanced Reading

•References:
• argc and argv: http://crasseux.com/books/ctutorial/argc-and-argv.html
• The C Language: https://en.wikipedia.org/wiki/C_(programming_language)
• Kernighan and Ritchie (K&R) C: https://www.youtube.com/watch?v=de2Hsvxaf8M
• C Standard Library: http://www.cplusplus.com/reference/clibrary/
• https://en.wikipedia.org/wiki/Bitwise_operations_in_C
• http://en.cppreference.com/w/c/language/operator_precedence

•Advanced Reading:
• After All These Years, the World is Still Powered by C Programming
• Is C Still Relevant in the 21st Century?
• Why Every Programmer Should Learn C

http://crasseux.com/books/ctutorial/argc-and-argv.html
http://www.youtube.com/watch?v=de2Hsvxaf8M
http://www.youtube.com/watch?v=de2Hsvxaf8M
http://www.cplusplus.com/reference/clibrary/
http://en.cppreference.com/w/c/language/operator_precedence

