
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107 Lecture 5
Bitwise Operators

Reading: Bryant & O’Hallaron, Ch. 2.1
Ed Discussion: https://edstem.org/us/courses/46162/discussion/3538916

https://edstem.org/us/courses/46162/discussion/3538916

2

Bitmasks
We will frequently want to manipulate or otherwise isolate specific bits in a
larger collection of them. A bitmask is a constructed bit pattern that we can
use, along with standard bit operators like &, |, ^, ~, <<, and >>, to do this.

Motivating Example: Bit vectors
 Aside: C++ relies on bit vectors to efficiently implement vector<bool>.

3

Bit Vectors and Sets
Instead of using arrays of Booleans, one can more compactly store Boolean
information in bits instead.
• Example: we can represent current courses taken using a char and

manipulate its contents using bit operators.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

4

Bit Vectors and Sets

• How do we find the union of two sets of courses taken? Use OR:

00100011
01100001
 01100011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

5

Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken? Use AND:

00100011
& 01100001

 00100001

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

6

Bit Masking
Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
00001000
 00101011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

7

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010, or 0x1 << 1 */
#define CS106AX 0x4 /* 0000 0100, or 0x1 << 2 */
#define CS107 0x8 /* 0000 1000, or 0x1 << 3 */
#define CS110 0x10 /* 0001 0000, or 0x1 << 4 */
#define CS103 0x20 /* 0010 0000, or 0x1 << 5 */
#define CS109 0x40 /* 0100 0000, or 0x1 << 6 */
#define CS161 0x80 /* 1000 0000, or 0x1 << 7 */

char myClasses = ...;
myClasses = myClasses | CS107; // include CS107!

8

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010, or 0x1 << 1 */
#define CS106AX 0x4 /* 0000 0100, or 0x1 << 2 */
#define CS107 0x8 /* 0000 1000, or 0x1 << 3 */
#define CS110 0x10 /* 0001 0000, or 0x1 << 4 */
#define CS103 0x20 /* 0010 0000, or 0x1 << 5 */
#define CS109 0x40 /* 0100 0000, or 0x1 << 6 */
#define CS161 0x80 /* 1000 0000, or 0x1 << 7 */

char myClasses = ...;
myClasses |= CS107; // include CS107!

9

Bit Masking
• Example: how do we update our bit vector to indicate we’ve dropped CS103?

00100011
& 11011111

 00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses &= ~CS103; // Drop CS103

10

Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010

 00000010

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (myClasses & CS106B) {...
 // taken CS106B!

11

Bitwise Operator Tricks
• | with 1 is useful for turning select bits on
• & with 0 is useful for turning select bits off
• | is useful for taking the union of bits
• & is useful for taking the intersection of bits
• ^ is useful for flipping isolated bits
• ~ is useful for flipping all bits

12

Introducing GDB

Is there a way to step through the
execution of a program and print out
values as it’s running? e.g., to view

binary representations? Yes!

13

The GDB Debugger
• GDB is a command-line debugger, a text-based debugger with similar

functionality to other debuggers you may have used, such as in Qt Creator
• It lets you put breakpoints at specific places in your program to pause there
• It lets you step through execution line by line
• It lets you print out values of variables in various ways (including binary)
• It lets you track down where your program crashed
• And much, much more!

GDB is essential to your success in CS107 this quarter! We’ll be building our
familiarity with GDB over the course of the quarter.

14

gdb on a program
• gdb myprogram run gdb on executable
• b Set breakpoint on a function (e.g., b main)

 or line (b 42)
• r 82 Run with provided args
• n, s, continue control forward execution (next, step into, continue)
• p print variable (p varname) or evaluated expression (p 3L << 10)

• p/t, p/x binary and hex formats.
• p/d, p/u, p/c

• info args, locals

Important: gdb does not run the current line until you execute "next"

15

Demo: Bitmasks and GDB

16

gdb: highly recommended
At this point, setting breakpoints/stepping in gdb may seem like overkill for what
could otherwise be achieved by strategically placed printf statements.
However, gdb is incredibly useful for assign1 (and all assignments):
• A fast "C interpreter": p + <expression>

• Sandbox/try out ideas with bit shift operations, signed/unsigned types, etc.
• Can print values out in binary!
• Once you’re happy, incorporate changes to your .c file

• Tip: Open two terminal windows and SSH into myth in both
• Keep one for emacs, the other for gdb/command-line
• Easily reference C file line numbers and variables while accessing gdb

• Tip: Every time you update your C file, make and then rerun gdb.
gdb takes practice! But the payoff is huge!

17

Bit Masking
• Bit masking is also useful for integer representations as well. For instance, we

might want to check the value of the most-significant bit, or just one of the
middle bytes.

• Example: If I have a 32-bit integer j, what operation should I perform if I want
to get just the lowest byte in j?

 int j = ...;
 int k = j & 0xff; // mask to get just lowest byte

18

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.
 j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips
("complements") all but the least-significant byte, and preserves all other
bytes.

 j ^ ~0xff

19

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.
 j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips
("complements") all but the least-significant byte, and preserves all other
bytes.

 j ^ ~0xff

20

Powers of 2

Without using loops, how can we detect if a
number num is a power of 2? What’s special
about its binary representation and how can
we take advantage of that?

21

Demo: Powers of 2

22

Left Shift (<<)
The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the
left. New lower order bits are filled in with 0s, and bits shifted off the end are
lost.

 x << k; // evaluates to x shifted to the left by k bits
 x <<= k; // shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000

23

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the right end of the number are lost.
 x >> k; // evaluates to x shifted to the right by k bits
 x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = 2; // 0000 0000 0000 0010
x >>= 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1

24

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the right end of the number are lost.
 x >> k; // evaluates to x shifted to the right by k bit
 x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 0111 1111 1111 1111
printf("%d\n", x); // 32767!

25

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the right end of the number are lost.

 x >> k; // evaluates to x shifted to the right by k bit
 x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let’s fill with the sign bit!

26

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the right end of the number are lost.
 x >> k; // evaluates to x shifted to the right by k bit
 x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = 2; // 0000 0000 0000 0010
x >>= 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1

27

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.
 x >> k; // evaluates to x shifted to the right by k bit
 x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 1111 1111 1111 1111
printf("%d\n", x); // -1!

28

Right Shift (>>)
There are two kinds of right shifts, depending on the value and type you are
shifting:

• Logical Right Shift: fill new high-order bits with 0s.
• Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift.
Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!

29

Bit Operator Pitfall
• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work! 1 is by default an int, and you can’t shift an int by 32
because it only has 32 bits. You must specify that you want 1 to be a long.
(This will come up in assign1.)

long num = 1L << 32;

30

Demo: Absolute Value

