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CS107 Lecture 5
Bitwise Operators

Reading: Bryant & O’Hallaron, Ch. 2.1
Ed Discussion: https://edstem.org/us/courses/46162/discussion/3538916

https://edstem.org/us/courses/46162/discussion/3538916
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Bitmasks
We will frequently want to manipulate or otherwise isolate specific bits in a 
larger collection of them.  A bitmask is a constructed bit pattern that we can 
use, along with standard bit operators like &, |, ^, ~, <<, and >>, to do this.

Motivating Example: Bit vectors
 Aside: C++ relies on bit vectors to efficiently implement vector<bool>.
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Bit Vectors and Sets
Instead of using arrays of Booleans, one can more compactly store Boolean 
information in bits instead.
• Example: we can represent current courses taken using a char and 

manipulate its contents using bit operators.
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Bit Vectors and Sets

• How do we find the union of two sets of courses taken?  Use OR:

00100011
| 01100001
  --------
  01100011
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Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken?  Use AND:

00100011
& 01100001
  --------
  00100001
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Bit Masking
Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
| 00001000
  --------
  00101011
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Bit Masking
#define CS106A  0x1    /* 0000 0001 */
#define CS106B  0x2    /* 0000 0010, or 0x1 << 1 */
#define CS106AX 0x4    /* 0000 0100, or 0x1 << 2 */
#define CS107   0x8    /* 0000 1000, or 0x1 << 3 */
#define CS110   0x10   /* 0001 0000, or 0x1 << 4 */
#define CS103   0x20   /* 0010 0000, or 0x1 << 5 */
#define CS109   0x40   /* 0100 0000, or 0x1 << 6 */
#define CS161   0x80   /* 1000 0000, or 0x1 << 7 */

char myClasses = ...;
myClasses = myClasses | CS107; // include CS107!
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Bit Masking
#define CS106A  0x1    /* 0000 0001 */
#define CS106B  0x2    /* 0000 0010, or 0x1 << 1 */
#define CS106AX 0x4    /* 0000 0100, or 0x1 << 2 */
#define CS107   0x8    /* 0000 1000, or 0x1 << 3 */
#define CS110   0x10   /* 0001 0000, or 0x1 << 4 */
#define CS103   0x20   /* 0010 0000, or 0x1 << 5 */
#define CS109   0x40   /* 0100 0000, or 0x1 << 6 */
#define CS161   0x80   /* 1000 0000, or 0x1 << 7 */

char myClasses = ...;
myClasses |= CS107;   // include CS107!
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Bit Masking
• Example: how do we update our bit vector to indicate we’ve dropped CS103?

00100011
& 11011111
  --------
  00000011
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char myClasses = ...;
myClasses &= ~CS103; // Drop CS103
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Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010
  --------
  00000010
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char myClasses = ...;
if (myClasses & CS106B) {...
 // taken CS106B!
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Bitwise Operator Tricks
• | with 1 is useful for turning select bits on
• & with 0 is useful for turning select bits off
• | is useful for taking the union of bits
• & is useful for taking the intersection of bits
• ^ is useful for flipping isolated bits
• ~ is useful for flipping all bits
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Introducing GDB

Is there a way to step through the 
execution of a program and print out 
values as it’s running?  e.g., to view 

binary representations?  Yes!
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The GDB Debugger
• GDB is a command-line debugger, a text-based debugger with similar 

functionality to other debuggers you may have used, such as in Qt Creator
• It lets you put breakpoints at specific places in your program to pause there
• It lets you step through execution line by line
• It lets you print out values of variables in various ways (including binary)
• It lets you track down where your program crashed
• And much, much more!

GDB is essential to your success in CS107 this quarter!  We’ll be building our 
familiarity with GDB over the course of the quarter.
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gdb on a program
• gdb myprogram run gdb on executable
• b Set breakpoint on a function (e.g., b main)

 or line (b 42)
• r 82 Run with provided args
• n, s, continue control forward execution (next, step into, continue)
• p print variable (p varname) or evaluated expression (p 3L << 10)

• p/t, p/x                  binary and hex formats.
• p/d, p/u, p/c

• info args, locals

Important: gdb does not run the current line until you execute "next"
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Demo: Bitmasks and GDB
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gdb: highly recommended
At this point, setting breakpoints/stepping in gdb may seem like overkill for what 
could otherwise be achieved by strategically placed printf statements.
However, gdb is incredibly useful for assign1 (and all assignments):
• A fast "C interpreter": p + <expression>

• Sandbox/try out ideas with bit shift operations, signed/unsigned types, etc.
• Can print values out in binary!
• Once you’re happy, incorporate changes to your .c file

• Tip: Open two terminal windows and SSH into myth in both
• Keep one for emacs, the other for gdb/command-line
• Easily reference C file line numbers and variables while accessing gdb

• Tip: Every time you update your C file, make and then rerun gdb.
gdb takes practice! But the payoff is huge! 
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Bit Masking
• Bit masking is also useful for integer representations as well.  For instance, we 

might want to check the value of the most-significant bit, or just one of the 
middle bytes.

• Example: If I have a 32-bit integer j, what operation should I perform if I want 
to get just the lowest byte in j?

 int j = ...;
 int k = j & 0xff;  // mask to get just lowest byte 
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Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.
 j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips 
("complements") all but the least-significant byte, and preserves all other 
bytes.

 j ^ ~0xff
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Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.
 j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips 
("complements") all but the least-significant byte, and preserves all other 
bytes.

 j ^ ~0xff
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Powers of 2

Without using loops, how can we detect if a 
number num is a power of 2?  What’s special 
about its binary representation and how can 
we take advantage of that?
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Demo: Powers of 2
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Left Shift (<<)
The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the 
left.  New lower order bits are filled in with 0s, and bits shifted off the end are 
lost.

 x << k; // evaluates to x shifted to the left by k bits
 x <<= k; // shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off the right end of the number are lost.
    x >> k; // evaluates to x shifted to the right by k bits
    x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = 2; // 0000 0000 0000 0010
x >>= 1;  // 0000 0000 0000 0001
printf("%d\n", x); // 1
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right. Bits shifted off the right end of the number are lost.
    x >> k; // evaluates to x shifted to the right by k bit
    x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = -2; // 1111 1111 1111 1110
x >>= 1;  // 0111 1111 1111 1111
printf("%d\n", x); // 32767!
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right. Bits shifted off the right end of the number are lost.

 x >> k; // evaluates to x shifted to the right by k bit
     x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let’s fill with the sign bit!
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right. Bits shifted off the right end of the number are lost.
 x >> k; // evaluates to x shifted to the right by k bit
     x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = 2; // 0000 0000 0000 0010
x >>= 1;  // 0000 0000 0000 0001
printf("%d\n", x); // 1
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off the end are lost.
 x >> k; // evaluates to x shifted to the right by k bit
     x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110
x >>= 1;  // 1111 1111 1111 1111
printf("%d\n", x); // -1!
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Right Shift (>>)
There are two kinds of right shifts, depending on the value and type you are 
shifting:

• Logical Right Shift: fill new high-order bits with 0s.
• Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift.
Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!
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Bit Operator Pitfall
• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work!  1 is by default an int, and you can’t shift an int by 32 
because it only has 32 bits.  You must specify that you want 1 to be a long. 
(This will come up in assign1.)

long num = 1L << 32;



30

Demo: Absolute Value


