
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others..

CS107, Lecture 7
 C Strings

Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3
Ed Discussion: https://edstem.org/us/courses/46162/discussion/3592722

https://edstem.org/us/courses/46162/discussion/3592722

2

Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

3

String Diamond
Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.
• For example, diamond("doris") should print:

d
do
dor
dori
doris
 oris
 ris
 is
 s

4

Practice: String Diamond

string_diamond.c

5

Searching For Letters
strchr returns a pointer to the first occurrence of a character in a string, or
NULL if the character is not in the string.

char laureate[15];
strcpy(laureate, "Katalin Kariko");
char *first = strchr(laureate, 'a');
char *last = strrchr(laureate, 'a');
printf("%s\n", laureate); // Katalin Kariko
printf("%s\n", first); // atalin Kariko
printf("%s\n", last); // ariko

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the last occurrence.

6

Searching For Strings
strstr returns a pointer to the first occurrence of the second string in the first,
or NULL if it cannot be found.

char laureate[17];
strcpy(laureate, "Carolyn Bertozzi");
char *zz = strstr(laureate, "zz");
printf("%s\n", laureate); // Carolyn Bertozzi
printf("%s\n", zz); // zzi

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.

7

String Spans
strspn returns the length of the initial part of the first string which contains
only characters in the second string.

char laureate[17];
strcpy(laureate, "Barry Sharpless");
int length = strspn(laureate + 1, "road"); // 3

"How many places can we go in the first string before I
encounter a character not in the second string?"

8

String Spans
strcspn (c = "complement") returns the length of the initial part of the first
string which contains only characters not in the second string.

char laureate[17];
strcpy(laureate, "Barry Sharpless");
int length = strcspn(laureate + 2, "abcde"); // 6

"How many places can we go in the first string before I
encounter a character in the second string?"

9

C Strings As Parameters
When we pass a string as a parameter, it is passed as a char *. We can still
operate on the string the same way as with a char[].

int foo(char *str) {
 char ch = str[1];
 ...
}

// can also write this, but it is really a pointer
int foo(char str[]) { ...

10

Arrays of Strings
We can make an array of strings to group multiple strings together:

char *array[5]; // space to store 5 char *s

We can also use the following shorthand to initialize a string array:

char *array[] = {
 "Hello",
 "Hi",
 "Hey there"
};

11

Arrays of Strings
We can access each string using bracket syntax:

printf("%s\n", array[0]); // print out first string

When an array is passed as a parameter in C, C passes a pointer to the array’s
first element. In fact, you’re already seen this with main’s argv parameter! This
means we write the parameter type as:

void func(char **array) {

// equivalent to this, but it is really a double pointer
void func(char *array[]) {

12

Practice: Password Verification
Write a function verifyPassword that accepts a candidate password and
certain password criteria and returns whether the password is valid.

bool verifyPassword(char *password, char *validChars,
 char *badSubstrings[], size_t count);

password is valid if it contains only letters in validChars and does not contain
any substrings in badSubstrings.

13

Practice: Password Verification
bool verifyPassword(char *password, char *validChars,
 char *badSubstrings[], size_t count);

Example:

char *invalidSubstrings[] = {"1234" , "4132"};

bool valid1 = verifyPassword("1572", "0123456789",
 invalidSubstrings, 2); // true
bool valid2 = verifyPassword("141234", "0123456789",
 invalidSubstrings, 2); // false

14

Practice: Password
Verification

verify_password.c

15

Recall: Buffer Overflows
We must make sure there is enough space in the destination to hold the entire
copy, including the null-terminating character.

 char str2[6]; // not enough space!
 strcpy(str2, "hello, world!"); // overwrites other memory!

Writing past memory bounds is called a "buffer overflow". It can allow for
security vulnerabilities!

16

- other program memory -' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

Recall: Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

