
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others..

CS107, Lecture 8
 C String Wrap, Buffer Overflow, Security, Introduction to

Pointers

Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3
Ed Discussion: https://edstem.org/us/courses/46162/discussion/3606436

https://edstem.org/us/courses/46162/discussion/3606436

2

Recall: Buffer Overflows
We must make sure there is enough space in the destination to hold the entire
copy, including the null-terminating character.

 char str2[6]; // not enough space!
 strcpy(str2, "hello, world!"); // overwrites other memory!

Writing past memory bounds is called a "buffer overflow". It can allow for
security vulnerabilities!

3

- other program memory -' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

Recall: Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

4

Buffer Overflow Impacts
Buffer overflows can be serious, as they can lead to runtime errors and even
introduce security vulnerabilities into a program. Examples include:

• accessing memory you shouldn’t be able to access
• modifying memory you shouldn’t be modifying
• changing the value of a variable used later in the program
• changing the program to execute your assembly code instructions instead of its own

It’s our job as programmers to find and fix buffer overflows and other bugs,
not just for the functional correctness of our programs, but to protect people
who use and interact with our code.

5

Buffer Overflow Impacts
• AOL instant messenger buffer overflow: allowed remote attackers to execute

code:

https://www.cvedetails.com/cve/CVE-2002-0362/
https://www.computerworld.com/article/2586310/aol-instant-messenger-

vulnerable-to-hackers.html

• Morris Worm: first internet worm to gain widespread attention; exploited
buffer overflow in Unix command called "finger":

https://en.wikipedia.org/wiki/Morris_worm

https://www.cvedetails.com/cve/CVE-2002-0362/
https://www.computerworld.com/article/2586310/aol-instant-messenger-vulnerable-to-hackers.html
https://www.computerworld.com/article/2586310/aol-instant-messenger-vulnerable-to-hackers.html
https://en.wikipedia.org/wiki/Morris_worm

6

How can we identify buffer overflows?
There’s no single solution that works for everything. Finding and repairing
overflow vulnerabilities require a combination of software development
techniques:

• vigilance while programming (scrutinizing array reads and writes, pointer arithmetic)
• carefully reading documentation
• thoroughly testing to identify issues before shipping product
• thoroughly documenting assumptions in your code
• using software tools to methodically examine code for suspicious function calls

7

How can we identify buffer overflow?
MAN page for gets():

char *gets(char *s);

Never use gets(). Because it is impossible to tell
without knowing the data in advance how many characters
gets() will read, and because gets() will continue to
store characters past the end of the buffer, it is
extremely dangerous to use. It has been used to break
computer security. Use fgets() instead.

8

How can we identify buffer overflows?
• Valgrind: your best friend for this
• Write your own tests
• Consider writing tests before writing the main program

 ✨ cs107.stanford.edu/testing.html ✨

9

How Can We Fix Overflows?
Documentation & MAN Pages (Written by Others)

The strcpy() function copies the string pointed to by src,
including the terminating null byte (‘\0’), to the buffer pointed
to by dest. The strings may not overlap, and the destination
string dest must be large enough to receive the copy. Beware of
buffer overruns!

If the destination string of a strcpy() is not large enough, then
anything might happen. Overflowing fixed-length string buffers is
a favorite cracker technique for taking complete control of the
machine. Any time a program reads or copies data into a buffer,
the program first needs to check that there’s enough space. This
may be unnecessary if you can show that overflow is impossible,
but be careful: programs can get changed over time, in ways that
may make the impossible possible.

10

Memory Safe Systems Programming
Choose your Tools & Languages Carefully

Existing code bases or requirements for a project may dictate what tools you
use. Knowing C is crucial – it is and will remain widely used.
When you you are choosing tools for systems programming, consider languages
that can help guard against programmer error.

• Rust (Mozilla)
• Go (Google)
• Project Verona (Microsoft)

https://github.com/microsoft/verona

11

Association for Computing Machinery
(ACM) Code of Ethics

12

ACM Code of Ethics on Security

13

Demo: Memory Errors

memory_errors.c

14

Pointers
• A pointer is a variable that stores a memory address.
• Because there is no pass-by-reference in C like in C++, we rely on pointers to

share the addresses of variables with other functions.
• A single pointer can identify a single byte or an arbitrarily large data structure!
• Pointers are essential to dynamic memory allocation (coming soon).
• Pointers allow us to generically identify memory (coming less soon, but still

soon).

15

Memory
• Memory is a big array of bytes.
• Each byte has a unique numeric index that is

generally written in hexadecimal.
• A pointer stores any one of these memory

addresses.

Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

16

Looking Back at C++
How would we write a program with a function that takes in an int and
modifies it? We might use pass by reference.

void myFunc(int& num) {
 num = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 3!
 ...
}

17

Looking Ahead to C
• All parameters in C are passed "by value". For efficiency reasons, arrays (and

strings, by extension) passed in as parameters are caught as pointers.
• If an address is passed as a parameter, the address itself is copied as all

parameters are. But because that address is the location of data meaningful to
program execution, we have access to, and can even modify, that data.
• More generally, if we want to modify a parameter value in a function and have

any changes persist afterward the function returns, we can share the location
of the value—that is, share its address—instead of sharing the value itself. This
way we copy the address instead of the value.

18

Pointers
int x = 2;

// Make a pointer that stores the address of x.
// (& means "address of")
int *xptr = &x;

// Dereference the pointer to go to that address.
// (* means "dereference")
printf("%d", *xptr); // prints 2

If declaration: "pointer"
 ex: int * is "pointer to an int”
If operation: "dereference/the value at address”
 ex: *num is "the value at address num"

*

19

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

20

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

STACK

21

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

2

STACK

22

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

myFunc

intPtr

2

STACK

23

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

myFunc

intPtr

2

STACK

24

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

myFunc

intPtr

3

STACK

25

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

3

STACK

26

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

3

STACK

27

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

28

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

xmain()

STACK

29

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

30

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

31

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

32

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

xmain()

STACK

33

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

xmain()

STACK

34

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

35

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

36

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

37

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

38

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 3
…

x

val

main()

myFunc()

39

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

40

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

41

How to draw memory diagrams?
Address Value

…
0x105 '\0'
0x104 'y'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK
Address Value

0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'
...

0xff

0xfe

0xfd

0xfc

0xfb

0xfa

0xf9

0xf8

str

mystr

main()

STACK

0x1f0myFunc()

Choose whatever style is convenient for you,
keeping in mind that (1) memory is contiguous,
and (2) C types are different sizes.

42

C Parameters
When you pass a value as a parameter, C passes a copy of that value.

void myFunction(int x) {
 …
}

int main(int argc, char *argv[]) {
 int num = 4;
 myFunction(num); // passes copy of 4
}

43

C Parameters
When you pass a value as a parameter, C passes a copy of that value.

void myFunction(int *x) {
 …
}

int main(int argc, char *argv[]) {
 int num = 4;
 myFunction(&num); // passes copy of e.g. 0xffed63
}

44

C Parameters
When you pass a value as a parameter, C passes a copy of that value.

void myFunction(char ch) {
 …
}

int main(int argc, char *argv[]) {
 char *myStr = "Hello!";
 myFunction(myStr[1]); // passes copy of 'e'
}

45

C Parameters
If you are modifying a specific instance of some value, pass the location of what
you would like to modify.

Do I care about modifying this instance of my
data? If so, I need to pass where that instance
lives, as a parameter, so it can be modified.

46

Pointers
If you are modifying a specific instance of some value, pass the location of what
you would like to modify.

void capitalize(char *ch) {
 // modifies what is at the address stored in ch
}

int main(int argc, char *argv[]) {
 char letter = 'h';
 /* We don’t want to capitalize any instance of 'h'.
 * We want to capitalize *this* instance of 'h'! */
 capitalize(&letter);
 printf("%c", letter); // want to print 'H';
}

47

Pointers
If you are modifying a specific instance of some value, pass the location of what
you would like to modify.

void doubleNum(int *x) {
 // modifies what is at the address stored in x
}

int main(int argc, char *argv[]) {
 int num = 2;
 /* We don’t want to double any instance of 2.
 * We want to double *this* instance of 2! */
 doubleNum(&num);
 printf("%d", num); // want to print 4;
}

48

Pointers
If a function takes an address (pointer) as a parameter, it can go to that address
if it needs the actual value.

void capitalize(char *ch) {
 // *ch gets the character stored at address ch.
 char newChar = toupper(*ch);

 // *ch = goes to address ch and puts newChar there.
 *ch = newChar;
}

49

Pointers Summary
• If you are performing an operation with some input and do not care about any

changes to the input, pass the data type itself.
• If you are modifying a specific instance of some value, pass the location of

what you would like to modify.
• If a function takes an address (pointer) as a parameter, it can go to that

address if it needs the actual value.

• If a function accepts an int *, it can modify the int at the supplied address.
• If a function accepts a char *, it can modify the char at the supplied address.
• If a function accepts an char **, it can modify the char * at the supplied

address.

