
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 15
Introduction to Assembly

Reading: B&O 3.1-3.4
Ed Discussion: https://edstem.org/us/courses/46162/discussion/3715585

https://edstem.org/us/courses/46162/discussion/3715585

2

Course Overview
1. Bits and Bytes - How can a computer represent integer numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of

memory in our programs?
4. Generics - How can we use our knowledge of memory and data

representation to write code that works with any data type?
5. Assembly - How does a computer interpret and execute C programs?
6. Heap Allocators - How do core memory-allocation operations

like malloc and free work?

3

CS107 Topic 5: How does a
computer interpret and
execute C programs?

4

CS107 Topic 5
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better

code
• We can learn how to reverse engineer programs at the assembly level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

5

Bits all the way down
Data representation so far
• Integer (unsigned int, 2’s complement signed int)
• char (ASCII)
• Address (unsigned long)
• Aggregates (arrays, structs)

The code itself is binary too!
• Instructions (machine code)

6

gcc
• gcc is the compiler that converts your human-readable code into machine-

readable instructions.
• C, and other languages, are high-level abstractions we use to write code

efficiently. But computers don’t really understand things like data structures,
variable types, etc. Compilers are the translator!
• Pure machine code is 1s and 0s – everything is bits, even your programs! But

we can read it in a human-readable form called assembly. (Engineers used to
write code in assembly before C).
• There may be multiple assembly instructions needed to encode a single C

instruction.
• We’re going to go behind the curtain to see what the assembly code for our

programs looks like.

7

Central Processing Units (CPUs)

Intel 8086, 16-bit
microprocessor
($86.65, 1978)

Raspberry Pi BCM2836
32-bit ARM microprocessor
($35 for everything, 2015)

Intel Core i9-9900K 64-bit
8-core multi-core processor
($449, 2018)

8

Why are we reading assembly?

Main goal: Information retrieval
• We will not be writing assembly! (that’s the compiler’s job)
• Rather, we want to translate the assembly back into our C code.
• Knowing how our C code is converted into machine instructions gives us

insight into how to write cleaner, more efficient code.

C codeidea Assembly
code Machine code

Programmer-
generated

gcc (compiler+assembler)
generated

9

Demo: Looking at an
Executable (objdump -d)

10

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

What does this look like in assembly?

11

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

make
objdump -d sum

12

Our First Assembly
0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

13

Our First Assembly
0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

This is the name of the function (same
as C) and the memory address where
the code for this function starts.

14

Our First Assembly
0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

These are the memory addresses where
each of the instructions live. Sequential
instructions are sequential in memory.

15

Our First Assembly
0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

This is the assembly code:
human-readable versions of
each machine code instruction.

16

Our First Assembly
0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

This is the machine code: raw
hexadecimal instructions,
representing binary as read by the
computer. Different instructions
require a varying number of bytes.

17

Our First Assembly
0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

18

Our First Assembly
0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

Each instruction has an
operation name ("opcode").

19

Our First Assembly
0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retqEach instruction can also have

arguments ("operands").

20

Our First Assembly
0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

$[number] means a constant value,
or "immediate" (e.g. 1 here).

21

Our First Assembly
0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

%[name] identifies a register, a storage
location on the CPU (e.g., eax here).

22

🌟 Keep a resource guide handy 🌟
• https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf
• B&O book:

• Canvas -> Files
-> Bryant_OHallaron_ch3.1-3.8.pdf

• It’s like learning how to read—though not speak—a new language!

https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf

23

Assembly Abstraction
• C abstracts away the low-level details of machine code. It lets us work using

variables, variable types, and other higher-level abstractions.
• C and other languages let us write code that works on most machines.
• Assembly code is just bytes! No variable types, no type checking, etc.
• Assembly/machine code is processor-specific.
• What is the level of abstraction for assembly code?

24

Registers

%rax

25

Registers

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

26

Registers

What is a register?

A register is a fast read/write memory
slot right on the CPU that can hold

variable values.
Registers are not located in memory.

27

Registers
• A register is a 64-bit space inside the processor.
• There are 16 registers, each with a unique name.
• Registers are like "scratch paper" for the processor. Data being accessed or

manipulated are first moved into registers. Most ALU operations—that is,
arithmetic-logic unit operations—can only act on values stored in registers.
• Registers also hold parameters and return values for functions.
• Registers are extremely fast memory!
• Processor instructions consist mostly of moving data into/out of registers and

performing arithmetic operations on them. This is the level of logic your
program must be in to execute!

28

Machine-Level Code
Assembly instructions manipulate these registers. For example:
• One instruction adds two numbers in registers
• One instruction transfers data from a register to memory
• One instruction transfers data from memory to a register

29

Computer architecture

memory needed
for program
execution
(stack, heap, etc.)
accessed by address

registers accessed
by name

ALU is main
workhorse of CPU

disk/server stores program
when not executing

30

GCC And Assembly
• GCC compiles your program – it lays out memory on the stack and heap and

generates assembly instructions to access and do calculations on those
memory locations.
• Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

int sum = x + y; 1) Copy x into register 1
2) Copy y into register 2
3) Add register 2 to register 1
4) Write register 1 to memory for sum

31

Assembly
• We are going to learn the x86-64 instruction set architecture. This instruction

set is used by Intel and AMD processors.
• There are many other instruction sets: ARM, MIPS, etc.

32

Instruction set architecture (ISA)
A contract between program/compiler and hardware:
• Defines operations that the processor (CPU) can execute
• Data read/write/transfer operations
• Control mechanisms

Intel originally designed their instruction set back in 1978.
• Legacy support is a huge issue for x86-64
• Originally 16-bit processor, then 32 bit, now 64 bit.

These design choices dictated the register sizes
(and even register/instruction names).

Compiler

Application program

OS

ISA

CPU design

Circuit design

Chip layout

33

mov
The mov instruction copies bytes from one place to another;
it is like the assignment operator (=) in C, though the arguments are reversed.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

$0x104

%rbx

0x6005c0Direct address

34

Operand Forms: Immediate

mov $0x104,_____

Copy the value
0x104 into some

destination.

35

Operand Forms: Registers

mov %rbx,____

mov ____,%rbx

Copy the value in
register %rbx into
some destination.

Copy the value
from some source
into register %rbx.

36

Operand Forms: Absolute Addresses

mov 0x104,_____

mov _____,0x104

Copy the value at
address 0x104 into
some destination.

Copy the value
from some source
into the memory at

address 0x104.

37

Practice: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 5 is stored at address 0x42, and the value 8
is stored in %rbx.

1. mov $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55

38

Operand Forms: Indirect

mov (%rbx),_____

mov _____,(%rbx)

Copy the value at the
address stored in register

%rbx into some destination.

Copy the value from some source
into the memory at the address

stored in register %rbx.

39

Operand Forms: Base + Displacement

mov 0x10(%rax),_________

mov __________,0x10(%rax)

Copy the value at the
address (0x10 plus what is
stored in register %rax) into

some destination.

Copy the value from some source
into the memory at the address (0x10
plus what is stored in register %rax).

40

Operand Forms: Indexed

mov (%rax,%rdx),__________

mov ___________,(%rax,%rdx)

Copy the value at the address which is
(the sum of the values in registers %rax

and %rdx) into some destination.

Copy the value from some source into the
memory at the address which is (the sum of

the values in registers %rax and %rdx).

41

Operand Forms: Indexed

mov 0x10(%rax,%rdx),______

mov _______,0x10(%rax,%rdx)

Copy the value at the address which is (the
sum of 0x10 plus the values in registers
%rax and %rdx) into some destination.

Copy the value from some source into the
memory at the address which is (the sum of 0x10

plus the values in registers %rax and %rdx).

42

Practice: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x11 is stored at address 0x10C, 0xAB is
stored at address 0x104, 0x100 is stored in register %rax and 0x3 is stored in
%rdx.

1. mov $0x42,(%rax)
2. mov 4(%rax),%rcx
3. mov 9(%rax,%rdx),%rcx

Imm(rb, ri) is equivalent to address Imm + R[rb] + R[ri]

Displacement: positive or
negative constant (if missing, = 0)

Base: register
(if missing, = 0)

Index: register
(if missing, = 0)

43

Operand Forms: Scaled Indexed

mov (,%rdx,4),______

mov _______,(,%rdx,4)

Copy the value at the address which
is (4 times the value in register

%rdx) into some destination.

Copy the value from some source into the
memory at the address which is (4 times

the value in register %rdx).

The scaling factor
(e.g. 4 here) must
be hardcoded to
be either 1, 2, 4
or 8.

44

Operand Forms: Scaled Indexed

mov 0x4(,%rdx,4),______

mov _______,0x4(,%rdx,4)

Copy the value at the address which is
(4 times the value in register %rdx, plus

0x4), into some destination.

Copy the value from some source into the
memory at the address which is (4 times

the value in register %rdx, plus 0x4).

45

Operand Forms: Scaled Indexed

mov (%rax,%rdx,2),________

mov _________,(%rax,%rdx,2)

Copy the value at the address which is (the
value in register %rax plus 2 times the value in

register %rdx) into some destination.

Copy the value from some source into the memory at
the address which is (the value in register %rax

plus 2 times the value in register %rdx).

46

Operand Forms: Scaled Indexed

mov 0x4(%rax,%rdx,2),_____

mov ______,0x4(%rax,%rdx,2)

Copy the value at the address which is (0x4 plus the
value in register %rax plus 2 times the value in

register %rdx) into some destination.

Copy the value from some source into the memory at
the address which is (0x4 plus the value in register

%rax plus 2 times the value in register %rdx).

47

Most General Operand Form

Imm(rb,ri,s)

is equivalent to…

Imm + R[rb] + R[ri]*s

48

Most General Operand Form

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement:
pos/neg constant
(if missing, = 0)

Index: register
(if missing, = 0)

Scale must be
1,2,4, or 8
(if missing, = 1)

Base: register (if
missing, = 0)

49

Operand Forms
Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟! R[𝑟!] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟!) M[R 𝑟!] Indirect

Memory 𝐼𝑚𝑚(𝑟") M[𝐼𝑚𝑚 + 	R 𝑟"] Base + displacement

Memory (𝑟" , 𝑟#) M[R 𝑟" + R 𝑟#] Indexed

Memory 𝐼𝑚𝑚(𝑟" , 𝑟#) M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟#] Indexed

Memory (, 𝑟# , 𝑠) M[R 𝑟# 	 / 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(, 𝑟# , 𝑠) M[𝐼𝑚𝑚 + R 𝑟# 	 / 𝑠] Scaled indexed

Memory (𝑟" , 𝑟# , 𝑠) M[R 𝑟" + R 𝑟# 	 / 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟" , 𝑟# , 𝑠) M[𝐼𝑚𝑚 + R 𝑟" + 	R 𝑟# 	 / 𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

50

Practice: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x1 is stored in register %rcx, the value
0x100 is stored in register %rax, the value 0x3 is stored in register %rdx, and
value 0x11 is stored at address 0x10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4),%rbx
Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement Base Index Scale
(1,2,4,8)

51

Goals of indirect addressing: C

Why are there so many forms of
indirect addressing?

We see these indirect addressing
paradigms in C as well!

52

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

We’re on our way to understanding assembly! What
looks understandable right now?
Some notes:
• Registers store addresses and values
• mov src, dst copies value into dst
• sizeof(int) is 4
• Instructions executed sequentially

We’ll come back to this
example in future lectures!

53

From Assembly to C
Spend a few minutes thinking about the main paradigms of the mov instruction.
• What might be the equivalent C-like operation?
• Examples (note %r__ registers are 64-bit):
1. mov $0x0,%rdx
2. mov %rdx,%rcx
3. mov $0x42,(%rdi)
4. mov (%rax,%rcx,8),%rax

54

From Assembly to C
Spend a few minutes thinking about the main paradigms of the mov instruction.
• What might be the equivalent C-like operation?
• Examples (note %r__ registers are 64-bit):
1. mov $0x0,%rdx -> maybe long x = 0
2. mov %rdx,%rcx -> maybe long x = y;
3. mov $0x42,(%rdi) -> maybe *ptr = 0x42;
4. mov (%rax,%rcx,8),%rax -> maybe long x = arr[i];

Indirect addressing
is like pointer
arithmetic/deref!

