
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 16
Assembly: Arithmetic and Logic

Reading: B&O 3.5-3.6
Ed Discussion: https://edstem.org/us/courses/46162/discussion/3748926

https://edstem.org/us/courses/46162/discussion/3748926

2

Data Sizes
Data types in assembly are managed via a slightly different set of names:
• A byte is 1 byte.
• A word is 2 bytes.
• A double word is 4 bytes.
• A quad word is 8 bytes.

Assembly instructions can include suffixes to refer to these types:
• b means byte
• w means word
• l means double word
• q means quad word

3

Register Sizes
63Bit: 071531

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rsi %esi %si %sil

%rdi %edi %di %dil

4

Register Sizes

%rbp %ebp %bp %bpl

63Bit: 071531

%rsp %esp %sp %spl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b

5

Register Sizes

%r12 %r12d %r12w %r12b

63Bit: 071531

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b

6

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to be executed
• %rsp stores the address of the stack frame of the currently executing function

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

7

mov Variants
• mov can take an optional suffix (b/w/l/q) that specifies the size of data to

move: movb, movw, movl, movq
• mov only updates the specific register bytes or memory locations indicated.

• Exception: movl writing to a register will also set high order 4 bytes to 0.

8

Practice: mov And Data Sizes
For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g., movb, movw, movl or movq).

1. mov__ %eax, (%rsp)
2. mov__ (%rax), %dx
3. mov__ $0xff, %bl
4. mov__ (%rsp,%rdx,4),%dl
5. mov__ (%rdx), %rax
6. mov__ %dx, (%rax)

9

Practice: mov And Data Sizes
For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g., movb, movw, movl or movq).

1. movl %eax, (%rsp)
2. movw (%rax), %dx
3. movb $0xff, %bl
4. movb (%rsp,%rdx,4),%dl
5. movq (%rdx), %rax
6. movw %dx, (%rax)

10

mov
• The movabsq instruction is used to write a 64-bit immediate (constant) value.
• The regular movq instruction can only take 32-bit immediates.
• 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

11

movz and movs
• There are two mov instructions that can be used to copy a smaller source to a

larger destination: movz and movs.
• movz fills the remaining bytes with zeros
• movs fills the remaining bytes by sign-extending the most significant bit of the

source.
• The source must be from memory or a register, and the destination must be a

register.

12

movz and movs

Instruction Description

movzbw Move zero-extended byte to word

movzbl Move zero-extended byte to double word

movzwl Move zero-extended word to double word

movzbq Move zero-extended byte to quad word

movzwq Move zero-extended word to quad word

MOVZ S,R R ← ZeroExtend(S)

13

movz and movs

Instruction Description

movsbw Move sign-extended byte to word

movsbl Move sign-extended byte to double word

movswl Move sign-extended word to double word

movsbq Move sign-extended byte to quad word

movswq Move sign-extended word to quad word

movslq Move sign-extended double word to quad word

cltq Sign-extend %eax in place to fill all of %rax
%rax <- SignExtend(%eax)

MOVS S,R R ← SignExtend(S)

14

Register Sizes
• The operand forms with parentheses (e.g., mov (%rax), %rdi) require that

registers in parentheses be the 64-bit registers.
• For that reason, you may see smaller registers extended with e.g., movs into

the larger registers before these kinds of instructions.

15

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

16

lea
The lea instruction copies an "effective address" from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

17

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

18

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

19

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

20

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

7(%rax, %rax, 8), %rdx Go to the address (7 + %rax + 8 * %rax)
and copy data there into %rdx.

Copy (7 + %rax + 8 * %rax) into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

21

Reverse Engineering Practice
void calculate(int x, int y, int *ptr) {
 ____?____;
}

calculate:
 leal (%rdi,%rsi,2), %eax
 movl %eax, (%rdx)
 ret

Note: assume x is in %rdi, y
is in %rsi and ptr is in %rdx.

22

Reverse Engineering Practice
void calculate(int x, int y, int *ptr) {
 *ptr = x + 2 * y;
}

calculate:
 leal (%rdi,%rsi,2), %eax
 movl %eax, (%rdx)
 ret

23

A Note About Operand Forms
• Many instructions share the same address operand forms that mov uses.

• e.g., 7(%rax, %rcx, 2).

• These forms work the same way for other instructions (exception, lea):
• It interprets this form as just the calculation, not the dereferencing
• lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

24

Unary Instructions
The following instructions operate on a single operand (register or memory):

Examples:
 incq 16(%rax)
 dec %rdx
 not %rcx

Instruction Effect Description

inc D D ← D + 1 Increment

dec D D ← D - 1 Decrement

neg D D ← -D Negate

not D D ← ~D Complement

25

Binary Instructions
The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g., 'subtract S from D':

Examples:
 addq %rcx,(%rax)

 xorq $16,(%rax, %rdx, 8)

 subq %rdx,8(%rax)

Instruction Effect Description

add S, D D ← D + S Add

sub S, D D ← D - S Subtract

imul S, D D ← D * S Multiply

xor S, D D ← D ^ S Exclusive-or

or S, D D ← D | S Or

and S, D D ← D & S And

26

Shift Instructions
The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Examples:
 shll $3,(%rax)
 shrl %cl,(%rax,%rdx,8)
 sarl $4,8(%rax)

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

27

Shift Amount

• When using %cl, the width of what you are shifting determines what portion
of %cl is used.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.
• If %cl = 0xff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3

bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

