
1
This document is copyright (C) Stanford Computer Science, licensed under Crea:ve Commons A=ribu:on 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 20
Assembly: Func.on Call, Take II

Reading: B&O 3.7
Ed Discussion: h7ps://edstem.org/us/courses/46162/discussion/3817979

https://edstem.org/us/courses/46162/discussion/3817979

2

Register Restrictions
There is only one copy of registers for all programs and func5ons.
• Problem: what if funcA is building up a value in register %r10, and calls funcB

in the middle, which also has instruc5ons that modify %r10? funcA’s value will
be destroyed!

• Solu,on: lay down some "rules of the road" that callers and callees must
follow when using registers so they do not interfere with one another.

• These rules define two types of registers: caller-owned and callee-owned

3

Caller/Callee

main

function1

function2

Caller/callee is
terminology that
refers to a pair of
functions. A single
function may be both
a caller and callee
simultaneously (e.g.
function1 at right).

calls

calls

main is the caller,
and function1 is
the callee.

function1 is
the caller, and
function2 is
the callee.

4

Register Restrictions

• Callee must save the exis5ng value
and restore it when done.

• Caller can store values in them and
assume they’ll be preserved across
func5on calls.

• Callee does not need to save the
exis5ng value.

• Caller’s values could be overwriFen
by a callee! The caller may consider
saving values elsewhere before
calling func5ons.

Caller-Owned Callee-Owned

5

Caller-Owned Registers

main

function1

calls

main can use caller-owned
registers and know that
function1 will not permanently
modify their values.

If function1 wants to use any
caller-owned registers, it must
save the existing values and
restore them before returning.

6

Caller-Owned Registers

function1:
 push %rbp
 push %rbx
 ...
 pop %rbx
 pop %rbp
 retq

main

function1

calls

7

Callee-Owned Registers

main can use callee-owned
registers but calling function1
may permanently modify their
values.

If function1 wants to use any
callee-owned registers, it can do
so without saving the existing
values.

main

function1

calls

8

Callee-Owned Registers

main

function1

calls

main:
 ...
 push %r10
 push %r11
 callq function1
 pop %r11
 pop %r10
 ...

9

A Day In the Life of function1

main

function1

function2

calls

calls

Caller-owned registers:
• function1 must save/restore existing values

of any it wants to use.
• function1 can assume that calling

function2 will not permanently change their
values.

Callee-owned registers:
• function1 does not need to save/restore

existing values of any it wants to use.
• calling function2 may permanently change

their values.

10

Example: Recursion
• Let’s look at an example of recursion at the assembly level.
• We’ll use everything we’ve learned about registers, the stack, function calls,

parameters, and assembly instructions!
• We’ll also see how helpful GDB can be when tracing through assembly.

factorial.c and factorial

11

gdb tips

layout split
info reg

p $eax
p $eflags

b *0x400546
b *0x400550 if $eax > 98

ni
si

⭐⭐⭐

View C, assembly, and gdb (lab5)
Print all registers

Print register value
Print all condi5on codes currently set

Set breakpoint at assembly instruc5on
Set condi,onal breakpoint

Next assembly instruc5on
Step into assembly instruc5on (will step
into func5on calls)

(ctrl-x a: exit,
ctrl-l: resize,
refresh: refresh,
layout reg/asm,
focus next)

12

gdb tips
p/x $rdi
p/t $rsi

x $rdi
x/4bx $rdi
x/4wx $rdi

finish

⭐⭐⭐
Print register value in hex
Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

Finish function, return to caller

13

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

0000000000401136 <sum_array>:
 401136 <+0>: mov $0x0,%eax
 40113b <+5>: mov $0x0,%edx
 401140 <+10>: cmp %esi,%eax
 401142 <+12>: jge 0x40114f <sum_array+25>
 401144 <+14>: movslq %eax,%rcx
 401147 <+17>: add (%rdi,%rcx,4),%edx
 40114a <+20>: add $0x1,%eax
 40114d <+23>: jmp 0x401140 <sum_array+10>
 40114f <+25>: mov %edx,%eax
 401151 <+27>: retq

We’re done with all our assembly lectures! Now we
can fully understand what’s going on in the
assembly below, including how someone would call
sum_array in assembly and what the ret instruction
does.

