
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 23
Managing The Heap, Take II

Reading: B&O 9.9 and 9.11
Ed Discussion: https://edstem.org/us/courses/46162/discussion/3867604

https://edstem.org/us/courses/46162/discussion/3867604

2

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free

8
Used

56
Free

3

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8

Used 0x10 0x50 8
Free 0x10 null

4

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8

Used 0x10 0x50 8
Free 0x10 null

This is inefficient – it triples the size of every header,
when we just need to jump from one free block to
another. And even if we just made free headers bigger,
it’s complicated to have two different header sizes.

5

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?

6

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure? More difficult to access in a separate place

– prefer storing near blocks on the heap itself.

7

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free

24
Used

32
Free

8

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null

0x10
First free block

9

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!
• This means each payload must be big enough to store 2 pointers (16 bytes).

So, we must require that for every free block and every allocated one as well.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null

10

Explicit Free List Allocator
• This design builds on the implicit allocator, but also stores pointers to the next

and previous free block inside each free block’s payload.
• When we allocate a block, we look through just the free blocks using our linked

list to find a free one, and we update its header and the linked list to reflect its
allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free and

update the linked list.

This explicit list of free blocks increases
request throughput, with some costs
(design and internal fragmentation)

11

Explicit Free List: List Design
How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.)

Better memory utilization,
Linear-time free

Constant free (push
recent block onto stack)

(more at end of lecture)

Up to you!

12

How do you want to organize your explicit free list?(utilization/throughput)
A. Address-order

B. Last-in first-out (LIFO)

C. Other (e.g., by size, etc.)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68 0x70 0x78 0x80

16
Free 0x70 0x40 16

Used
16

Free 0x10 null 16
Used

16
Free null 0x10

Explicit free list design

Better memory util, linear free

Constant free (push recent block onto stack)

(see textbook)

Up to you!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null

0x10

First free
block

0x70

First free
block

13

Implicit vs. Explicit: So Far
Implicit Free List
• 8B header for size + alloc/free status

• Allocation requests are worst-case
linear in total number of blocks
• Implicitly address-order

Explicit Free List
• 8B header for size + alloc/free status
• Free block payloads store prev/next

free block pointers

• Allocation requests are worst-case
linear in number of free blocks
• Can choose block ordering

14

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

15

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

16

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

64
Free

17

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 40

Free

18

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Free

19

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Used c

20

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Free b + pad 16
Used c

21

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

22

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

We have enough memory space, but
it is fragmented into free blocks
sized from earlier requests!

We’d like to be able to merge
adjacent free blocks back together.
How can we do this?

23

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

Hey, look! I have a free
right neighbor. Let’s be

friends! J

24

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c

Hey, look! I have a free
right neighbor. Let’s be

friends! J

25

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

The process of combining adjacent
free blocks is called coalescing.

For your explicit heap allocator, you
should coalesce, if possible, when a
block is freed. You only need to
coalesce the most immediate right
neighbor.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c

26

Practice 1: Explicit (coalesce)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Used B 16

Free
16

Used A

27

Practice 1: Explicit (coalesce)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Used B 16

Free
16

Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Free

16
Used A

28

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available? Yes! We

can try to right-coalesce when calling free.
3. Can we avoid always copying/moving data during realloc?

29

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available? Yes! We

can try to right-coalesce when calling free.
3. Can we avoid always copying/moving data during realloc?

30

Realloc
• For the implicit allocator, we didn’t worry much about realloc. We always

moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

31

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

a’s earlier request was too small, so
we added padding. Now they are
requesting a larger size we can
satisfy with that padding! So realloc
can return the same address.

32

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

If a realloc is requesting to shrink,
we can still use the same starting
address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

33

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a 24

Free a 16
Free

If a realloc is requesting to shrink,
we can still use the same starting
address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

34

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

Even with the padding, we don’t
have enough space to satisfy the
larger size. But we have an adjacent
neighbor that is free – let’s team up!

35

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

Even with the padding, we don’t
have enough space to satisfy the
larger size. But we have an adjacent
neighbor that is free – let’s team up!

Now we can still return the same
address.

36

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a + pad 16

Free
24

Free

For your project, you should
combine with your right neighbors
as much as possible until we get
enough space, or until we know we
cannot get enough space.

37

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

40
Used a 24

Free

For your project, you should
combine with your right neighbors
as much as possible until we get
enough space, or until we know we
cannot get enough space.

38

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

For your project, you should
combine with your right neighbors
as much as possible until we get
enough space, or until we know we
cannot get enough space.

