
1
This document is copyright (C) Stanford Computer Science, licensed under Crea:ve Commons A=ribu:on 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 24
Managing The Heap, Wrap

Reading: B&O 9.9 and 9.11
Ed Discussion: h7ps://edstem.org/us/courses/46162/discussion/3875438

https://edstem.org/us/courses/46162/discussion/3875438

2

Final Assignment: Explicit Allocator
• Must have headers that track block information like in implicit (size, status in-

use or free) – you can copy from your implicit version
• Must have an explicit free list managed as a doubly-linked list, using the first

16 bytes of each free block’s payload for next/prev pointers.
• Must have a malloc implementation that searches the explicit list of free

blocks.
• Must coalesce a free block in free() whenever possible with its immediate right

neighbor.
• Must do in-place realloc when possible. Even if an in-place realloc is not

possible, you should still absorb adjacent right free blocks as much as possible
until you either can realloc in place or can no longer absorb and must realloc
elsewhere.

3

Final Project Tips
Read B&O textbook.
• Offers some starHng Hps for implemenHng your heap allocators.
• Make sure to cite any design ideas you discover.
Honor Code/collabora;on
• All non-textbook code is off-limits.
• Please do not discuss discuss code-level specifics with others.
• Your code should be designed, wriNen, and debugged by you

independently.
Helper Hours
• We will provide good debugging techniques and strategies!
• Come and discuss design tradeoffs!

⭐⭐⭐

4

Heap metadata

Going beyond: Explicit list w/size buckets
• Explicit lists are much faster than implicit lists.
• However, a first-fit placement policy is sHll linear in total # of free blocks.
• What about an explicit free list sorted by size (e.g., as a tree)?
• What about several explicit free lists bucketed by size? (below)

small
medium

large
jumbo

Heap
memory

Read B&O Section 9.9.14!

5

In the wild: glibc allocator
• https://sourceware.org/glibc/wiki/MallocInternals

Footer/Boundary tag (see textbook)

https://sourceware.org/glibc/wiki/MallocInternals

6

Practice 1: Explicit (realloc)
For the following heap layout, what would the heap look like aYer the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

optional but
extra practice

7

Practice 1: Explicit (realloc)
For the following heap layout, what would the heap look like aYer the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

24
Used A 24

Free
16

Used B

optional but
extra practice

8

Practice 2: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

optional but
extra practice

9

Practice 2: Explicit (realloc)
For the following heap layout, what would the heap look like aYer the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

optional but
extra practice

10

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

optional but
extra practice

11

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like aYer the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

optional but
extra practice

12

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

For the explicit allocator, note that
we can’t have payload less than 16
bytes, so here the only opHon for
the leYover 8 bytes is to use it as
padding for the exisHng block.

optional but
extra practice

