CS107, Lecture 25

Optimization

Reading: B&O 5
Ed Discussion: https://edstem.org/us/courses/46162/discussion/3929747

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/46162/discussion/3929747

Lecture Plan

* What is optimization?
* GCC Optimization
 Limitations of GCC Optimization

cp -r /afs/ir/class/csl107/lecture-code/lect25 .

Optimization

e Optimization is the task of making your program faster or more efficient with
space or time. You’ve seen explorations of efficiency with Big-O notation!

* Targeted, intentional optimizations to alleviate bottlenecks can result in big
gains. But it’s important to only work to optimize where necessary.

Optimization

Most of what you need to do with optimization can be summarized by:

1) If you’re doing something infrequently, and only on small inputs, do
whatever is simplest to code, understand, read, and debug.

2) If you’re doing something very often, and/or on big inputs, make the primary
algorithm’s Big-O cost reasonable

3) Let gcc do its magic from there
4) Optimize explicitly as a last resort

GCC Optimization

* Today, we’ll be comparing two levels of optimization in the gcc compiler:
e gcc -00 // mostly just literal translation of C
e gcc -02 // enable nearly all reasonable optimizations
* (we also use —0g, like =00 but more debugging friendly)

* There are other custom and more aggressive levels of optimization, e.g.:
e -03 //more aggressive than 02, trade size for speed
e -Os //optimize for size
« -Ofast //disregard standards compliance (!!)

* Exhaustive list of gcc optimization-related flags:
e https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compiler optimizations

How many GCC optimization levels are there? gce supports numbers up to

Asked 11 years, 3 months ago Active 5 months ago Viewed 62k times 3. Anything above is

interpreted as 3
How many GCC optimization levels are there?

109 |tried gcc -O1, gcc -02, gee -O3, and gec -O4
If | use a really large number, it won't work.

However, | have tried

e https://stackoverflow.co
m/questions/1778538/ho
and it compiled. Ww-many-gcc-optimization-

How many optimization levels are there? levels-are-there

https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there

Example: Matrix Multiplication

Here’s a standard matrix multiply, a triply-nested for loop:

void mmm(double a[][DIM], double b[][DIM], double c[][DIM], int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
c[i][j] += a[i][k] * b[k][]];

}
}
}
}
./mult // -00 (no optimization) ./mult opt // -02 (with optimization)
matrix multiply 2572: cycles 1.32M matrix multiply 2572: cycles ©.33M (opt)
matrix multiply 5072: cycles 10.64M matrix multiply ©5072: cycles 2.04M (opt)
matrix multiply 10072: cycles 16.55M matrix multiply 10072: cycles 13.66M (opt)

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

GCC Optimizations

Optimizations may target one or more of:
* Static instruction count
* Dynamic instruction count

 Cycle count / execution time

GCC Optimizations

 Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

10

Constant Folding

Constant Folding pre-calculates constants at compile-time where possible.

int seconds = 60 * 60 * 24 * n_days;

11

Constant Folding

int fold(int param) {
char arr[5];

int a = 0x107;
int b = a * sizeof(arr);
int ¢ = sqrt(2.9);

return a * param + (a + 0x15 / ¢ + strlen("Hello") * b - 0x37) / 4;

12

Constant Folding: Before

00000000000011b9 <fold>:

11b9: 55 push %rbp

1lba: 48 89 e5 mov %rsp,%rbp

11bd: 41 54 push %ri2

11bf: 53 push %rbx

11co0: 48 83 ec 30 sub $0x30,%rsp

11c4: 89 7d cc mov %edi, -0x34(%rbp)
11c7: c7 45 ec 07 01 00 00 movl $0x107, -0x14(%rbp)
1llce: 8b 45 ec mov -0x14(%rbp) ,%eax
11d1: 48 98 cltq

11d3: 89 c2 mov %eax, kedx

11d5: 89 do mov %edx, %eax

11d7: cl e0 02 shl $0x2, %eax

11da: 01 do add %edx, %eax

1lidc: 89 45 e8 mov %eax, -0x18(%rbp)
11df: 48 8b 05 2a Qe 00 00 mov oxe2a(%rip),%rax # 2010 <_IO_stdin_used+0x10>
1le6: 66 48 Of 6e cO movq %rax,%xmmo

1leb: e8 bo fe ff ff callg 10a@ <sqrt@plt>
11f0: f2 of 2c co cvttsd2si %xmme,%eax
11f4: 89 45 e4 mov %eax, -0x1c(%rbp)
11f7: 8b 45 ec mov -0x14(%rbp) ,%eax
11fa: of af 45 cc imul -0x34(%rbp),%eax
11fe: 41 89 c4 mov %eax,%rl2d

1201: b8 15 00 00 00 mov $0x15,%eax

1206: 99 cltd

1207: 7 7d e4 idivl -@x1c(%rbp)
120a: 89 c2 mov %eax, kedx

120c: 8b 45 ec mov -0x14(%rbp) ,%eax
120f: 01 do add %edx, %eax

1211: 48 63 d8 movslqg %eax,%rbx

1214: 48 8d 3d ed od 00 00 lea oxded (%rip),%rdi # 2008 <_I0_stdin_used+0x8>
121b: e8 20 fe ff ff callg 1e40 <strlen@p1t>
1220: 8b 55 e8 mov -0x18(%rbp) ,%edx
1223: 48 63 d2 movslqg %edx,%rdx

1226: 48 of af c2 imul %rdx,%rax

122a: 48 01 d8 add %rbx, %rax

122d: 48 83 e8 37 sub $0x37,%rax

1231: 48 c1 e8 02 shr $0x2,%rax

1235: 44 01 €0 add %rl2d,%eax

1238: 48 83 c4 30 add $0x30,%rsp

123c: Sb pop %rbx

123d: 41 5c pop %r12

123f: 5d pop %rbp

1240: c3 retq 13

Constant Folding: After (-02)

00000000000011b0 <fold>:

11b0: 69 c7 07 01 00 00 imul $0x107, %edi, %eax
11bé6: 05 a5 06 00 00 add $0x6a5, %eax
11bb: c3 retq

What is the consequence of this for you as a programmer? What should you do

differently or the same knowing that compilers can do this for you?
14

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

15

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);

int b = paraml * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);

16

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);

int b = paraml * (param2 + 0x107) + a;

return a * (param2 + 0x107) + b * (param2 + 0x107);
// = 2*a*a+paraml*a*a

0000000V 11bO <subexp>: // paraml in %edi, param2 in %esi

11b0: lea Ox107(%rsi),%eax // %eax stores a

11b6: 1imul %eax,%edi // paraml * 3

11b9: lea (%rdi,%rax,2),%esi // 2 * a + paraml * a

11bc: imul %esi,%eax // a * (2 * a + paraml * a)

11bf: retq L7

Common Sub-Expression Elimination

Why should we bother saving repeated calculations in variables if the compiler
has common subexpression elimination?

* The compiler may not always be able to optimize every instance. Plus, it can
help reduce redundancy!

* Makes code more readable!

18

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

19

Dead Code

Dead code elimination removes code that doesn’t serve a purpose:

if (paraml < param2 && paraml > param2) {
printf("This test can never be true!\n");
}

// Empty for loop
for (int i = @; i < 1000; i++);

// If/else that does the same operation in both cases
if (paraml == param2) {
paraml++;
} else {
paraml++;
}

// If/else that more trickily does the same operation in both cases
if (paraml == @) {

return 9;
} else {

return paraml; 20
1

Dead Code: Before (-00)

00000000000011a9 <dead code>:

11a9:
llaa:
11ad:
11b1:
11b4:
11b7:
11ba:
11bd:
11bf:
11c2:
11c5:
11c7:
llce:
11d3:
11d8:
11df:
llel:
11e5:
llec:
llee:
11f1:
11f4:
11f6:
11fa:
11fc:
1200:
1204:
1206:
120b:
120d:
1210:
1211:

55
48

89

e5
ec
ec
e8
ec
e8

ec
e8

3d
00
fe
fc

fc
fc

ec
e8

ec

ec
ec

00

ec

20

o1

o1
00

00

e 00 00
00
£f
00 00 00

03 00 00

00

push
mov
sub
mov
mov
mov
cmp
jge
mov
cm
jlg
lea
mov
callq
mov1l
m
%dﬁ%
cm
jlg
mov
cmp
jne
addl
Jmp
addl
cmpl
jne
mov
Jjmp
mov
leaveq
retq

%rbp

%rsp,%rbp

$0x20,%rsp

%edi, -0x14(%rbp

%esi, -0x18(%rbp
-0x14(%rbp), %eax
-0x18(%rbp),%eax

11d8 <dead_ code+0x2f>
-0x14(%rbp), %eax
-0x18(%rbp),%eax

11d8 <dead code+0x2f>
oxe36(%rip),%rdi
$0x0, %eax

1040 <printf@plt>
$0x0, -0x4(%rbp)

1le5 <dead code+0x3c>
$0x1, -0x4(%rbp
$0x3e7, -0x4(%r p%
1lel <dead code+0x38>
-0x14(%rbp), %eax
-0x18(%rbp),%eax

11fc <dead code+0x53>
$0x1, -0x14(%rbp)

1200 <dead_code+0x57>
$0x1, -0x14(%rbp

$0x0, -0x14(%rbp

120d <dead code+0x64>
$0x0, %eax

1210 <dead code+0x67>
-0x14 (%rbpY),%eax

2004 < _I0 stdin_used+0x4>

21

Dead Code: After (-02)

0000000000V011bO <dead code>:
11beo: 8d 47 o1 lea Ox1(%rdi),%eax
11b3: c3 retq

22

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

 Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

23

Strength Reduction

Strength reduction changes divide to multiply, multiply to add/shift, and mod to
AND to avoid using instructions that cost many cycles (multiply and divide).

int a = param2 * 32;
int b = a * 7;

int ¢ = b / 3;

int d = param2 % 2;

for (int i = @; i <= param2; i++) {
C += paraml[i] + ©x107 * i;
}

return c + d;

24

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

25

Code Motion

Code motion moves code outside of a loop if possible.

for (int i = @; i < n; i++) {
sum += arr[i] + foo * (bar + 3);

¥

Common subexpression elimination deals with expressions that appear multiple
times in the code. Here, the expression appears once, but is calculated each
loop iteration.

26

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

27

Tail Recursion

Tail recursion is an example of where GCC can identify recursive patterns that
can be more efficiently implemented iteratively.

long factorial(int n) {
if (n <=1) {
return 1;

}

else return n * factorial(n - 1);

¥

28

Taill recursion example: Lab6 bonus

Recall the factorial problem from an earlier lecture:

unsigned int factorial(unsigned int n) {
if (n <= 1) {
return 1;

¥

return n * factorial(n - 1);

* |nfinite recursion = Literal
stack overflow!
 Compiled with -0g!

What happens with factorial(-1)?

https://web.stanford.edu/class/cs107/lab6/extra.html

29

https://web.stanford.edu/class/cs107/lab6/extra.html

Factorial: -0g vs -02

401146 <+0>: cmp $0x1, %edi
401149 <+3>: jbe 0x40115b <factorial+21>
40114b <+5>: push %rbx

40114c <+6>: mov %edi,%ebx -02:

40114e <+8>: lea -ox1(%rdi),%edi :

401151 <+11>:callq 0x401146 <factorial> * What happened?

401156 <+16>:imul %ebx,%eax . . (g n
401159 <+195:pop %rbx. e Did the compiler “fix” the
40115a <+20>:retq infinite recursion?

40115b <+21>:mov $0x1,%eax .

401160 <+26>: retq 4011e0 <+0>: mov $0x1, %eax

4011e5 <+5>: cmp $0x1,%edi

4011e8 <+8>: jbe 0x4011fd <factorial+29>
4011lea <+10>:nopw Ox0(%rax,%rax,1)

401110 <+16>:mov %»edi,sedx

4011f2 <+18>:sub $0x1,%edi

4011f5 <+21>:imul %edx,%eax

40118 <+24>:cmp $0x1, %edi

4011fb <+27>:7jne 0x4011f0 <factorial+16>
4011fd <+29>:retq 30

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

31

Loop Unrolling

Loop Unrolling: Do n loop iterations’ worth of work per actual loop iteration, so
we save ourselves from doing the loop overhead (test and jump) every time, and
instead incur overhead only every n-th time.

for (int 1 = 0; i <=n - 4; i += 4) {
sum += arr[i];
sum += arr[i + 1];
sum += arr[i + 2];

sum += arr[i + 3];
} // after the loop handle any leftovers

32

Limitations of GCC Optimization

GCC can’t optimize everything! You ultimately may know more than GCC does.

int char_sum(char *s) {
int sum = ©;
for (size t i = 0; i < strlen(s); i++) {
sum += s[i];
}

return sum;

What is the bottleneck? strlen called for every character

What can GCC do? code motion — pull strlen out of loop
33

Limitations of GCC Optimization

GCC can’t optimize everything! You ultimately may know more than GCC does.

void lowerl(char *s) {
for (size_t i = @; 1 < strlen(s); i++) {
if (s[i] >= 'A' && s[i] <= 'Z") {

s[i] -= ("A" - "a’);
}
}
}
What is the bottleneck? strlen called for every character
What can GCC do? nothing! s is changing, so gcc doesn’t know if length is

constant across iterations. We, however, do!
34

e callgrind is another tool in the valgrind suite of tools

e callgrind is a profiler that measures instruction counts — another way to
measure efficiency

* can measure the number of instructions executed in a given run of our
program, and where they came from

 useful for optimizing — we can see where large #s of instruction executions
come from

35

Demo: limitations.c
and calilgrind

Why not always optimize?

Why not always just compile with —0O2?
e Difficult to debug optimized executables — only optimize when complete

e Optimizations may not always improve your program. The compiler does its
best, but may not work, or slow things down, etc. Experiment to see what
works best!

37

