
Wednesday, January 10, 2024

Computer Systems

Winter 2024

Stanford University

Computer Science Department

Reading: Reader: Bits and Bytes, Textbook: Chapter
2.2

Lecturer: Chris Gregg

CS 107

Lecture 2: Integer

Representations and
Bits / Bytes

Today's Topics
• Logistics

• Assign0 — Due Monday

• Labs start next week

• Lab preferences: please re-do if you put in preferences on Tuesday (sorry!)

• Office hours will start this week

• Reading: Reader: Bits and Bytes, Textbook: Chapter 2.2 (very mathy…)

• Integer Representations

• Unsigned numbers

• Signed numbers

• two's complement

• Signed vs Unsigned numbers

• Casting in C

• Signed and unsigned comparisons

• The sizeof operator

• Min and Max integer values

• Truncating integers

• two's complement overflow

Information Storage

A bit on bits
• As we briefly discussed in lecture 1, a "bit" is either a 0 or a 1

• Here is how we count in binary:

Binary Decimal
0 0
1 1

10 2
11 3
100 4
101 5
110 6
111 7

1000 8
etc.

• Notice that you can represent two
numbers with 1 binary digit, four
numbers with two binary digits, eight
numbers with three binary digits.

• The number of integers you can
represent is:

 2

• So, an "eight bit" number can represent

28 numbers, which is 256.

• A 32-bit number can represent 232

numbers

number of bits

Information Storage

In C, everything can be thought of as a block of 8 bits

Information Storage

In C, everything can be thought of as a block of 8 bits

called a "byte"

Information Storage
We will discuss manipulating bytes on a bit-by-bit level, but we won't be able
to consider an individual bit on its own.

In a computer, the memory system is simply a large array of bytes (sound
familiar, from CS106B?)

7 2 8 3 14 99 -6 3 45 11
200d 204d 208d 212d 216d 220d 224d 228d 232d 236d
0xc8 0xcc 0xd0 0xd4 0xd8 0xdc 0xe0 0xe4 0xe8 0xec

values (ints):

address (decimal):

address (hex):

Each address (a pointer!) represents the next byte in memory.

E.g., address 0 is a byte, then address 1 is the next full byte, etc.

Again: you can't address a bit. You must address at the byte level.

Byte Range
Because a byte is made up of 8 bits, we can represent the range of a byte as
follows:

00000000 to 11111111

This range is 0 to 255 in decimal.

But, neither binary nor decimal is particularly convenient to write out bytes
(binary is too long, and decimal isn't numerically friendly for byte
representation)

So, we use "hexadecimal," (base 16).

Hexadecimal
Hexadecimal has 16 digits, so we augment our normal 0-9 digits with six
more digits: A, B, C, D, E, and F.

Figure 2.2 in the textbook shows the hex digits and their binary and decimal
values:

Hexadecimal
• In C, we write a hexadecimal with a starting 0x. So, you will see numbers

such as 0xfa1d37b, which means that it is a hex number.

• You should memorize the binary representations for each hex digit. One

trick is to memorize A (1010), C (1100), and F (1111), and the others are
easy to figure out.

• Let's practice some hex to binary and binary to hex conversions:

Convert: 0x173A4C to binary.

0x173A4C is binary

0b000101110011101001001100

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011

is hexadecimal 3CADB3

(start from the right)

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011

is hexadecimal 3CADB3

(start from the right)

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011

is hexadecimal 3CADB3

(start from the right)

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011

is hexadecimal 3CADB3

(start from the right)

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011

is hexadecimal 3CADB3

(start from the right)

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011

is hexadecimal 3CADB3

(start from the right)

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

0b1111001010110110110011

is hexadecimal 3CADB3

(start from the right)

Decimal to Hexadecimal
To convert from decimal to hexadecimal, you need to repeatedly divide

 the number in question by 16, and the remainders make up the digits of

 the hex number:

Hexidecimal to Decimal

To convert from hexadecimal to decimal, multiply each of the hexadecimal

digits by the appropriate power of 16:

Let the computer do it!
Honestly, hex to decimal and vice versa are easy to let the computer
handle. You can either use a search engine (Google does this
automatically), or you can use a python one-liner:

Let the computer do it!

You can also use Python to convert to and from binary:

(but you should memorize this as it is easy and you will use it frequently)

Integer Representations

Integer Representations

The C language has two different ways to represent numbers, unsigned and signed:

unsigned: can only represent non-negative numbers

signed: can represent negative, zero, and positive numbers

We are going to talk about these representations, and also about what happens
when we expand or shrink an encoded integer to fit into a different type (e.g., int to
long)

Unsigned Integers
For positive (unsigned) integers, there is a 1-to-1 relationship between the decimal
representation of a number and its binary representation. If you have a 4-bit
number, there are 16 possible combinations, and the unsigned numbers go from 0
to 15:

0b0000 = 0 0b0001 = 1 0b0010 = 2 0b0011 = 3
0b0100 = 4 0b0101 = 5 0b0110 = 6 0b0111 = 7
0b1000 = 8 0b1001 = 9 0b1010 = 10 0b1011 = 11
0b1100 = 12 0b1101 = 13 0b1110 = 14 0b1111 = 15

The range of an unsigned number is 0 → 2w - 1, where w is the number of bits in
our integer. For example, a 32-bit int can represent numbers from 0 to 232 - 1,
or 0 to 4,294,967,295.

Signed Integers: How do we represent them?
What if we want to represent negative numbers? We have choices!

One way we could encode a negative number is simply to designate some bit as a
"sign" bit, and then interpret the rest of the number as a regular binary number and
then apply the sign. For instance, for a four-bit number:

0 001 = 1

0 010 = 2

0 011 = 3

0 100 = 4

0 101 = 5

0 110 = 6

0 111 = 7

1 001 = -1

1 010 = -2

1 011 = -3

1 100 = -4

1 101 = -5

1 110 = -6

1 111 = -7

This might be okay...but we've only represented 14 of our 16 available numbers...

Signed Integers: How do we represent them?
0 001 = 1

0 010 = 2

0 011 = 3

0 100 = 4

0 101 = 5

0 110 = 6

0 111 = 7

1 001 = -1

1 010 = -2

1 011 = -3

1 100 = -4

1 101 = -5

1 110 = -6

1 111 = -7

What about 0 000 and 1 000? What should
they represent?

Well...this is a bit tricky!

Signed Integers: How do we represent them?
0 001 = 1

0 010 = 2

0 011 = 3

0 100 = 4

0 101 = 5

0 110 = 6

0 111 = 7

1 001 = -1

1 010 = -2

1 011 = -3

1 100 = -4

1 101 = -5

1 110 = -6

1 111 = -7 0 000 1 000Let's look at the bit patterns:

What about 0 000 and 1 000? What should
they represent?

Well...this is a bit tricky!

Should we make the 0 000 just represent decimal 0? What about 1 000? We
could make it 0 as well, or maybe -8, or maybe even 8, but none of the choices
are nice.

Signed Integers: How do we represent them?
0 001 = 1

0 010 = 2

0 011 = 3

0 100 = 4

0 101 = 5

0 110 = 6

0 111 = 7

1 001 = -1

1 010 = -2

1 011 = -3

1 100 = -4

1 101 = -5

1 110 = -6

1 111 = -7 0 000 1 000Let's look at the bit patterns:

Should we make the 0 000 just represent decimal 0? What about 1 000? We
could make it 0 as well, or maybe -8, or maybe even 8, but none of the choices
are nice.

What about 0 000 and 1 000? What should
they represent?

Well...this is a bit tricky!

Fine. Let's just make 0 000 to be equal to decimal 0. How does arithmetic work?

Well…to add two numbers, you need to know the sign, then you might have to
subtract (borrow and carry, etc.), and the sign might change…this is going to get
ugly!

Signed Integers: How do we represent them?

There is a better way!

Signed Integers: How do we represent them?
Behold: the "two's complement" circle:

In the early days of computing*, two's
complement was determined to be an
excellent way to store binary numbers.

In two's complement notation, positive
numbers are represented as themselves
(phew), and negative numbers are
represented as the two's complement of
themselves (definition to follow).

This leads to some amazing arithmetic
properties!

*John von Neumann suggested it in 1945, for the EDVAC computer.

Two's Complement

In practice, a negative number in two's complement is obtained by
inverting all the bits of its positive counterpart*, and then adding 1.
*Inverting all the bits of a number is its "one's complement"

Definition:

A two's-complement number system encodes positive
and negative numbers in a binary number representation.
The weight of each bit is a power of two, except for the
most significant bit, whose weight is the negative of the
corresponding power of two.

B2Tw means "Binary to Two's complement function"

Two's Complement
In practice, a negative number in two's
complement is obtained by inverting all
the bits of its positive counterpart*, and
then adding 1, or: x = ~x + 1

*Inverting all the bits of a number is its "one's complement"

Example: The number 2 is represented as normal in
binary: 0010

-2 is represented by inverting the bits, and adding 1:

0010 ☞ 1101

 1101

+ 1

 1110

Two's Complement
Trick: to convert a positive number to its
negative in two's complement, start
from the right of the number, and write
down all the digits until you get to a 1.
Then invert the rest of the digits:

*Inverting all the bits of a number is its "one's complement"

Example: The number 2 is represented as normal in
binary: 0010

Going from the right, write down numbers until you
get to a 1:

 10

Then invert the rest of the digits:

1110

Two's Complement
To convert a negative number to a
positive number, perform the same
steps!

Example: The number -5 is represented in two's
complements as: 1011

5 is represented by inverting the bits, and adding 1:

1011 ☞ 0100

 0100

+ 1

 0101

Shortcut: start from the right, and write down
numbers until you get to a 1:

 1

Now invert all the rest of the digits:

0101

Two's Complement: Neat Properties
There are a number of useful properties
associated with two's complement
numbers:

1. There is only one zero (yay!)

2. The highest order bit (left-most) is 1

for negative, 0 for positive (so it is
easy to tell if a number is negative)

3. Adding two numbers is just…adding!

Example:

2 + -5 = -3

 0010 ☞ 2

+1011 ☞ -5

 1101 ☞ -3 decimal (wow!)

Two's Complement: Neat Properties
More useful properties:

4. Subtracting two numbers is simply
performing the two's complement on
one of them and then adding.

Example:

4 - 5 = -1

0100 ☞ 4, 0101 ☞ 5

Find the two's complement of 5: 1011

add:

 0100 ☞ 4

+1011 ☞ -5

 1111 ☞ -1 decimal

Two's Complement: Neat Properties
More useful properties:

5. Multiplication of two's complement
works just by multiplying (throw away
overflow digits).

Example: -2 * -3 = 6

 1110 ☞ -2

 x1101 ☞ -3

 1110

 0000

 1110

 +1110

 10110110 ☞ 6

Two's Complement: Powers of two remain!

From the definition of a two's complement
number, we can see that we are still
dealing with bits being equal to their
powers-of-two place: there isn't anything
magical about the placement of the bits:

-5 = 1 0 1 1

 (1 * -23) + (0 * 22) + (1 * 21) + (1 * 20)

Practice
Convert the following 4-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (1100) ☞

b. 7 (0111) ☞

c. 3 (0011) ☞

d. -8 (1000) ☞

Practice
Convert the following 4-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (1100) ☞

b. 7 (0111) ☞

c. 3 (0011) ☞

d. -8 (1000) ☞

0100

1001

1101

 1000 (?! If you look at
the chart, +8 cannot be represented
in two's complement with 4 bits!)

Practice
Convert the following 8-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (11111100) ☞

b. 27 (00011011) ☞

c. -127 (10000001) ☞

d. 1 (00000001) ☞

00000100

11100101

01111111

11111111

Casting Between Signed and Unsigned
Converting between two numbers in C can happen explicitly (using a
parenthesized cast), or implicitly (without a cast):

int tx, ty;
unsigned ux, uy;
…
tx = (int) ux;
uy = (unsigned) ty;

1
2
3
4
5

int tx, ty;
unsigned ux, uy;
…
tx = ux; // cast to signed
uy = ty; // cast to unsigned

1
2
3
4
5

explicit implicit

When casting: the underlying bits do not change, so there isn't any
conversion going on, except that the variable is treated as the type that it is.
You cannot convert a signed number to its unsigned counterpart using a cast!

Casting Between Signed and Unsigned

// test_cast.c
#include<stdio.h>
#include<stdlib.h>

int main() {
 int v = -12345;
 unsigned int uv = (unsigned int) v;

 printf("v = %d, uv = %u\n",v,uv);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12

$./test_cast
v = -12345, uv = 4294954951

When casting: the underlying bits do not change, so there isn't any
conversion going on, except that the variable is treated as the type that it is.
You cannot convert a signed number to its unsigned counterpart using a cast!

Casting Between Signed and Unsigned

 int x = -1;
 unsigned u = 3000000000; // 3 billion

 printf("x = %u = %d\n", x, x);
 printf("u = %u = %d\n", u, u);

1
2
3
4
5

$./test_printf
x = 4294967295 = -1
u = 3000000000 = -1294967296

printf has three 32-bit integer representations:

%d : signed 32-bit int

%u : unsigned 32-bit int

%x : hex 32-bit int

As long as the value is a 32-bit type, printf will treat it according to the
formatter it is applying:

Signed vs Unsigned Number Wheels

Comparison between signed and unsigned integers
When a C expression has combinations of signed and unsigned variables, you
need to be careful!

If an operation is performed that has both a signed and an unsigned value, C
implicitly casts the signed argument to unsigned and performs the
operation assuming both numbers are non-negative. Let's take a look…

Expression Type Evaluation
0 == 0U
-1 < 0
-1 < 0U
2147483647 > -2147483647 - 1
2147483647U > -2147483647 - 1
2147483647 > (int)2147483648U
-1 > -2
(unsigned)-1 > -2

Comparison between signed and unsigned integers
When a C expression has combinations of signed and unsigned variables, you
need to be careful!

If an operation is performed that has both a signed and an unsigned value, C
implicitly casts the signed argument to unsigned and performs the
operation assuming both numbers are non-negative. Let's take a look…

Expression Type Evaluation
0 == 0U Unsigned 1
-1 < 0 Signed 1
-1 < 0U Unsigned 0
2147483647 > -2147483647 - 1 Signed 1
2147483647U > -2147483647 - 1 Unsigned 0
2147483647 > (int)2147483648U Signed 1
-1 > -2 Signed
 1
(unsigned)-1 > -2 Unsigned 1
Note: In C, 0 is false and everything else is true. When C produces a boolean value, it allways chooses 1 to represent true.

Comparison between signed and unsigned integers
Let's try some more…a bit more abstractly.
int s1, s2, s3, s4;

unsigned int u1, u2, u3, u4;

Which many of the following
statements are true? (assume that

variables are set to values that place
them in the spots shown)

s3 > u3
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3

Comparison between signed and unsigned integers
Let's try some more…a bit more abstractly.
int s1, s2, s3, s4;

unsigned int u1, u2, u3, u4;

Which many of the following
statements are true? (assume that

variables are set to values that place
them in the spots shown)

s3 > u3 : true
u2 > u4 : true
s2 > s4 : false
s1 > s2 : true
u1 > u2 : true
s1 > u3 : true

The sizeof Operator
As we have seen, integer types are limited by the number of bits they hold. On
the 64-bit myth machines, we can use the sizeof operator to find how many
bytes each type uses:
int main() {
 printf("sizeof(char): %d\n", (int) sizeof(char));
 printf("sizeof(short): %d\n", (int) sizeof(short));
 printf("sizeof(int): %d\n", (int) sizeof(int));
 printf("sizeof(unsigned int): %d\n", (int) sizeof(unsigned int));
 printf("sizeof(long): %d\n", (int) sizeof(long));
 printf("sizeof(long long): %d\n", (int) sizeof(long long));
 printf("sizeof(size_t): %d\n", (int) sizeof(size_t));
 printf("sizeof(void *): %d\n", (int) sizeof(void *));
 return 0;
}

$./sizeof
sizeof(char): 1
sizeof(short): 2
sizeof(int): 4
sizeof(unsigned int): 4
sizeof(long): 8
sizeof(long long): 8
sizeof(size_t): 8
sizeof(void *): 8

Type Width in bytes Width in bits
char 1 8
short 2 16
int 4 32
long 8 64
void * 8 64

MIN and MAX values for integers
Because we now know how bit patterns for integers works, we can figure out the
maximum and minimum values, designated by INT_MAX, UINT_MAX, INT_MIN,
(etc.), which are defined in limits.h

Type
Width
(bytes)

Width
(bits)

Min in hex (name) Max in hex (name)

char 1 8 80 (CHAR_MIN) 7F (CHAR_MAX)

unsigned char 1 8 0 FF (UCHAR_MAX)

short 2 16 8000 (SHRT_MIN) 7FFF (SHRT_MAX)

unsigned short 2 16 0 FFFF (USHRT_MAX)

int 4 32 80000000 (INT_MIN) 7FFFFFFF (INT_MAX)

unsigned int 4 32 0 FFFFFFFF (UINT_MAX)

long 8 64 8000000000000000 (LONG_MIN) 7FFFFFFFFFFFFFFF (LONG_MAX)

unsigned long 8 64 0 FFFFFFFFFFFFFFFF (ULONG_MAX)

Expanding the bit representation of a number
Sometimes we want to convert between two integers having different sizes.
E.g., a short to an int, or an int to a long.

We might not be able to convert from a bigger data type to a smaller data
type, but we do want to always be able to convert from a smaller data type to
a bigger data type.

This is easy for unsigned values: simply add leading zeros to the
representation (called "zero extension").

unsigned short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

Expanding the bit representation of a number
For signed values, we want the number to remain the same, just with more
bits. In this case, we perform a "sign extension" by repeating the sign of the
value for the new digits. E.g.,

short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100b

int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;
// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;
// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

Sign-extension Example
// show_bytes() defined on pg. 45, Bryant and O'Halloran
int main() {
 short sx = -12345; // -12345
 unsigned short usx = sx; // 53191
 int x = sx; // -12345
 unsigned ux = usx; // 53191

 printf("sx = %d:\t", sx);
 show_bytes((byte_pointer) &sx, sizeof(short));
 printf("usx = %u:\t", usx);
 show_bytes((byte_pointer) &usx, sizeof(unsigned short));
 printf("x = %d:\t", x);
 show_bytes((byte_pointer) &x, sizeof(int));
 printf("ux = %u:\t", ux);
 show_bytes((byte_pointer) &ux, sizeof(unsigned));

 return 0;
}

$./sign_extension
sx = -12345: c7 cf
usx = 53191: c7 cf
x = -12345: c7 cf ff ff
ux = 53191: c7 cf 00 00

(careful: this was printed
on the little-endian myth
machines!)

Truncating Numbers: Signed
What if we want to reduce the
number of bits that a number
holds? E.g.

int x = 53191;
short sx = (short) x;
int y = sx;

What happens here? Let's look at the bits in x (a 32-bit int), 53191:

0000 0000 0000 0000 1100 1111 1100 0111

When we cast x to a short, it only has 16-bits, and C truncates the number:

1100 1111 1100 0111

What is this number in decimal? Well, it must be negative (b/c of the initial
1), and it is -12345.

Truncating Numbers: Signed
What if we want to reduce the
number of bits that a number
holds? E.g.

int x = 53191; // 53191
short sx = (short) x; // -12345
int y = sx;

This is a form of overflow! We have altered the value of the number.
Be careful!

We don't have enough bits to store the int in the short for the value we have
in the int, so the strange values occur.

What is y above? We are converting a short to an int, so we sign-extend,
and we get -12345!

 1100 1111 1100 0111 becomes

Play around here: http://www.convertforfree.com/twos-complement-calculator/
1111 1111 1111 1111 1100 1111 1100 0111

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Signed
If the number does fit into the
smaller representation in the
current form, it will convert just
fine.

int x = -3; // -3
short sx = (short) -3; // -3
int y = sx; // -3

x: 1111 1111 1111 1111 1111 1111 1111 1101 becomes

Play around here: http://www.convertforfree.com/twos-complement-calculator/

sx: 1111 1111 1111 1101

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Unsigned
We can also lose information with
unsigned numbers:

unsigned int x = 128000;
unsigned short sx = (short) x;
unsigned int y = sx;

Bit representation for x = 128000 (32-bit unsigned int):

0000 0000 0000 0001 1111 0100 0000 0000

Truncated unsigned short sx:

 1111 0100 0000 0000

which equals 62464 decimal.

Converting back to an unsigned int, y = 62464

Overflow in Unsigned Addition
When integer operations overflow in C, the runtime does not produce an error:
#include<stdio.h>
#include<stdlib.h>
#include<limits.h> // for UINT_MAX

int main() {
 unsigned int a = UINT_MAX;
 unsigned int b = 1;
 unsigned int c = a + b;

 printf("a = %u\n",a);
 printf("b = %u\n",b);
 printf("a + b = %u\n",c);

 return 0;
}

$./unsigned_overflow
a = 4294967295
b = 1
a + b = 0

Technically, unsigned integers in C don't
overflow, they just wrap. You need to be
aware of the size of your numbers. Here is
one way to test if an addition will fail:

// for addition
#include <limits.h>
unsigned int a = <something>;
unsigned int x = <something>;
if (a > UINT_MAX - x) /* `a + x` would overflow */;

Overflow in Signed Addition
Signed overflow wraps around to the negative numbers:

YouTube fell into this trap — their view counter was a signed, 32-bit int. They
fixed it after it was noticed, but for a while, the view count for Gangnam Style
(the first video with over INT_MAX number of views) was negative.

Overflow in Signed Addition
In the news on January 5, 2022 (!):

https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-
that-stopped-user-from-calling-911/

https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-that-stopped-user-from-calling-911/
https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-that-stopped-user-from-calling-911/

Overflow in Signed Addition
Signed overflow wraps around to the negative numbers.

$./signed_overflow
a = 2147483647
b = 1
a + b = -2147483648

#include<stdio.h>
#include<stdlib.h>
#include<limits.h> // for INT_MAX

int main() {
 int a = INT_MAX;
 int b = 1;
 int c = a + b;

 printf("a = %d\n",a);
 printf("b = %d\n",b);
 printf("a + b = %d\n",c);

 return 0;
}

Technically, signed integers in C produce
undefined behavior when they overflow. On two's
complement machines (virtually all machines these
days), it does overflow predictably. You can test to
see if your addition will be correct:

// for addition
#include <limits.h>
int a = <something>;
int x = <something>;
if ((x > 0) && (a > INT_MAX - x)) /* `a + x` would overflow */;
if ((x < 0) && (a < INT_MIN - x)) /* `a + x` would underflow */;

References and Advanced Reading

•References:
•Two's complement calculator: http://www.convertforfree.com/twos-complement-
calculator/

•Wikipedia on Two's complement: https://en.wikipedia.org/wiki/
Two%27s_complement

•The sizeof operator: http://www.geeksforgeeks.org/sizeof-operator-c/

•Advanced Reading:
•Signed overflow: https://stackoverflow.com/questions/16056758/c-c-unsigned-
integer-overflow

•Integer overflow in C: https://www.gnu.org/software/autoconf/manual/
autoconf-2.62/html_node/Integer-Overflow.html

•https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-
truncated-how-is-the-new-value-determined

http://www.convertforfree.com/twos-complement-calculator/
http://www.convertforfree.com/twos-complement-calculator/
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
http://www.geeksforgeeks.org/sizeof-operator-c/
https://stackoverflow.com/questions/16056758/c-c-unsigned-integer-overflow
https://stackoverflow.com/questions/16056758/c-c-unsigned-integer-overflow
https://www.gnu.org/software/autoconf/manual/autoconf-2.62/html_node/Integer-Overflow.html
https://www.gnu.org/software/autoconf/manual/autoconf-2.62/html_node/Integer-Overflow.html
https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-truncated-how-is-the-new-value-determined
https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-truncated-how-is-the-new-value-determined

References and Advanced Reading

•References:
•argc and argv: http://crasseux.com/books/ctutorial/argc-and-argv.html

•The C Language: https://en.wikipedia.org/wiki/C_(programming_language)

•Kernighan and Ritchie (K&R) C: https://www.youtube.com/watch?v=de2Hsvxaf8M

•C Standard Library: http://www.cplusplus.com/reference/clibrary/

•https://en.wikipedia.org/wiki/Bitwise_operations_in_C

•http://en.cppreference.com/w/c/language/operator_precedence

•Advanced Reading:
•After All These Years, the World is Still Powered by C Programming

•Is C Still Relevant in the 21st Century?

•Why Every Programmer Should Learn C

http://crasseux.com/books/ctutorial/argc-and-argv.html
https://en.wikipedia.org/wiki/C_(programming_language)
https://www.youtube.com/watch?v=de2Hsvxaf8M
http://www.cplusplus.com/reference/clibrary/
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
http://en.cppreference.com/w/c/language/operator_precedence
https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
http://insights.dice.com/2014/12/08/c-still-relevant-21st-century/
https://www.pluralsight.com/blog/software-development/why-every-programmer-should-learn-c

0
1

2

3

4

-1

-2

-3

-4

7

6

5

-7

-6

-5

-8

0000 0001

0010

0011

0100

0101

0110

0111

1111

1110

1101

1100

1011

1010

1001 1000

4-bit

two's complement

signed integer
representation

0
1

2

3

4

15

14

13

12

7

6

5

9

10

11

8

0000 0001

0010

0011

0100

0101

0110

0111

1111

1110

1101

1100

1011

1010

1001 1000

4-bit

unsigned integer
representation

