CS 107 L
|_ecture 2: Integer VST NN
Representations and

4 1100 tWOSComplement 55 1 4
signed integer

Bits / Bytes

Wednesday, January 10, 2024 NI w0 016
-7 8 7

Computer Systems

Winter 2024

Stanford University

Computer Science Department

Reading: Reader: Bits and Bytes, Textbook: Chapter
2.2

Lecturer: Chris Gregg

loday's lopics

Logistics

Assign0 — Due Monday

Lalbs start next week

Lab preferences: please re-do if you put in preferences on Tuesday (sorry!)
- Office hours will start this week
Reading: Reader: Bits and Bytes, Textbook: Chapter 2.2 (very mathy...)
Integer Representations

Unsigned numbers

Signed numbers

two's complement

Signed vs Unsigned numbers

Casting in C

Signed and unsigned comparisons

The sizeof operator

Min and Max integer values

Truncating integers

two's complement overflow

Information Storage

A DIt on DItS

As we pbriefly discussed In lecture 1, a "bit" is eithera O or a 1
Here IS how we count In binary:

Binary
0
1
10
11
100
101
110
111
1000

etc.

Decimal
0

0O N O OB~ W DN =

Notice that you can represent two
numbers with 1 binary digit, four
numbers with two binary digits, eight
numbers with three binary digits.
The number of integers you can
represent Is:

5 number of bits

S0, an "eight bit" number can represent
28 numbers, which is 250.

A 32-bit number can represent 232
numbers

Information Storage

In C, everything can be thought of as a block of 8 bits

Information Storage

In C, everything can be thought of as a block of 8 bits
called a "byte"

Information Storage

We will discuss manipulating bytes on a bit-by-bit level, but we won't be able
to consider an individual bit on its own.

In @ computer, the memory system is simply a large array of bytes (sound
familiar, fromm CS106B7)

values (ints):
address (decimal);
address (hex):

7 2 8 3 1499 -6 3 45 11

200d 204d 208d 212d

216d

220d

224d

228d

232d

236d

Oxc8 Oxcc 0xdO 0Oxd4

Oxd8

Oxdc

Oxe0

Oxe4d

Oxe8

Oxec

Fach address (a pointer!) represents the next byte in memory.

E.g., address O Is a byte, then address 1 is the next full byte, etc.

Again: you can't address a bit. You must address at the byte level.

Byte Range

Because a byte is made up of 8 bits, we can represent the range of a byte as
follows:

0000000010 11111111

This range is O to 255 In decimal.

But, neither binary nor decimal is particularly convenient to write out bytes
(binary is too long, and decimal isn't numerically friendly for byte
representation)

S0, we use "hexadecimal,” (base 106).

Hexadecimal

Hexadecimal has 16 digits, so we augment our normal 0-9 digits with six
more digits: A, B, C, D, E, and F.

Figure 2.2 In the textbook shows the hex digits and their binary and decimal
values:

Hex digit 0 1 2 3 4 5 6 4
Decimal value 0 1 2 3 4 5 6 14
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 3 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

Hexadecimal

In C, we write a hexadecimal with a starting 0x. So, you will see numbers
such as 0xfald37b, which means that it is a hex number.

You should memorize the binary representations for each hex digit. One
trick is to memorize A(1010), C(1100), and F (1111), and the others are

easy to figure out.
Let's practice some hex to binary and binary to hex conversions:

. Hex digit 0) 1 2 3 4 5 6 4
Convert: 0x173A4C to binary. o a W e
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hexadecimal 1 7 3 A 4 C
Binary 0001 0111 0011 1010 0100 1100
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
' ' Bi 1 1000 1001 1010 1011 1100 1101 1110
0x173A4C is binary tnary value

0b000101110011101001001100

Hexadecimal

Convert: 0b1111001010110110110011 to hexadecimal.

Binary

Hexadecimal

11
3

1100
C

1010
A

1101
D

0b1111001010110110110011

IS hexadecimal 3CADB3

N (start from the right)
Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 4
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110

Hexadecimal

Convert: 0b1111001010110110110011 to hexadecimal.

Binary

Hexadecimal

11
3

1100
C

1010
A

1101
D

0b1111001010110110110011

IS hexadecimal 3CADB3

N (start from the right)
Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 4
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110

Hexadecimal

Convert: 0b11110010101101710110011 to hexadecimal.

Binary

Hexadecimal

11
3

1100
C

1010
A

1101
D

0b1111001010110110110011

IS hexadecimal 3CADB3

" (start from the right)
Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 4
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110

Hexadecimal

Convert: 0b1111001010110110110011 to hexadecimal.

Binary

Hexadecimal

11
3

1100
C

1010
A

1101
D

0b1111001010110110110011

IS hexadecimal 3CADB3

N (start from the right)
Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 4
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110

Hexadecimal

Convert: 0b11110072010110110110011 to hexadecimal.

Binary

Hexadecimal

11
3

1100
C

1010
A

1101
D

0b1111001010110110110011

IS hexadecimal 3CADB3

N (start from the right)
Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 4
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110

Hexadecimal

Convert: 0b1111001010110110110011 to hexadecimal.

Binary

Hexadecimal

11
3

1100
C

1010
A

1101
D

0b1111001010110110110011

IS hexadecimal 3CADB3

N (start from the right)
Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 4
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110

Hexadecimal

Convert: 0b1111001010110110110011 to hexadecimal.

Binary

Hexadecimal

11
3

1100
C

1010
A

1101
D

0b1111001010110110110011

IS hexadecimal 3CADB3

N (start from the right)
Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 4
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110

Decimal to Hexadecimal

Jo convert from decimal to hexadecimal, you need to repeatedly divide
the number In question by 16, and the remainders make up the digits of
the hex number:

314156 decimal:

314,156 / 16 = 19,634 with 12 remainder: C
19,634 / 16 = 1,227 with 2 remainder: 2
1,227 / 16 = 76 with 11 remainder: B
76 / 16 = 4 with 12 remainder: C
4 / 16 = 0 with 4 remainder: 4

Reading from bottom up: 0x4CB2C

Hexidecimal to Decimal

To convert from hexadecimal to decimal, multiply each of the hexadecimal
digits by the appropriate power of 16:

OxTAF:

7 *x 1672 + 10 * 16 + 15
7 x 266 + 160 + 15
1792 + 160 + 15 = 1967

| et the computer do it!

Honestly, hex to decimal and vice versa are easy to let the computer
handle. You can either use a search engine (Google does this
automatically), or you can use a python one-liner:

O O 4. cgregg@myth10: ~ (ssh)

:~$ python -c "print(hex(314156))"

Ox4cb2c
:~$ python -c "print(0x7af)"

~$ B

1967

| et the computer do it!

You can also use Python to convert to and from binary:

® 0 4. cgregg@myth10: ~ (ssh)

:~$ python -c "print(bin(06x173A4C))"
0b10111001110100100110606

:~$ python -c "print(hex(06b1111001010110110116011))"

:~$ B

Ox3cadb3

(lout you should memorize this as it is easy and you will use it frequently)

INnteger Representations

INnteger Representations

The C language has two different ways to represent numbers, unsigned and signed:
unsigned: can only represent non-negative numbers

sighed: can represent negative, zero, and positive numbers

We are going to talk about these representations, and also about what happens
when we expand or shrink an encoded integer to fit into a different type (e.g., int to

long)

Unsigned Integers

For positive (unsigned) integers, there is a 1-to-1 relationship between the decimal
representation of a number and its binary representation. If you have a 4-bit

number, there are 16 possible combinations, and the unsigned numbers go from O
to 15:

0b0000 = O 0b0001 =1 0b0010 = 2 0b0011 = 3
0b0100 = 4 0b0101 = 5 0b0110 = 6 0b0111 = 7
0b1000 = 8 0b1001 =9 0b1010 = 10 0bl1011 = 11
0b1100 = 12 0bl1101 = 13 0b1110 = 14 0bl111 = 15

The range of an unsigned number is O = 2w - 1, where w Is the number of bits In
our integer. For example, a 32-bit int can represent numbers from O to 232 - 1,
or O to 4,294,967,295.

Signed Integers: How do we represent them?

What if we want to represent negative numbers? We have choices!

One way we could encode a negative number is simply to designate some bit as a
'sign” bit, and then interpret the rest of the number as a regular binary number and
then apply the sign. For instance, for a four-bit number:

0001 =1 1001 = -1
0010 =2 1010 = -2
0011 =3 1011 =-3
0100 = 4 1100 = -4
0101 =5 1101 =-5
0110=6 1110 = -6
0111 =7 1111 = -7

This might be okay...but we've only represented 14 of our 16 available numbers.. { 7 |

Signed Integers: How do we represent them?

0001 = 1
0010 =2
0011 =3
0100 = 4
0101 =5
0110 =6
0111 =7

1001 = -1
1010 = -2
1011 =-3
1100 = -4
1101 =-5
1110 = -6

1111 =-7

What about O 000 and 1 000? What should
they represent”/

Well...this Is a bit tricky!

Signed Integers: How do we represent them?

0001 = 1
0010 =2
0011 =3
0100 = 4
0101 =5
0110 =6
0111 =7

1001 = -1
1010 = -2
1011 =-3
1100 = -4
1101 =-5
1110 = -6

1111 =-7

What about O 000 and 1 000? What should
they represent”/

Well...this Is a bit tricky!

Let's look at the bit patterns: 0 000 1 000

Should we make the 0 000 just represent decimal 07 What about 1 0007 We
could make it O as well, or maybe -8, or maybe even 8, but none of the choices

are nice.

Signed Integers: How do we represent them?

0 001 =1 1 001 = -1 What about O 000 and 1 000 What should
0010 =72 1010 = -2 they represent”/

0011 =3 1011 =-3

0100 =4 1100 = -4 Well...this is a bit tricky!

0101 =5 1101 =-5

8 1 1? z 673 1 1 1? z 673 | et's look at the bit patterns: 0 000 1 000

Should we make the 0 000 just represent decimal 07 What about 1 0007 We
could make it O as well, or maybe -8, or maybe even 8, but none of the choices
are nice.

Fine. Let's just make O 000 to be equal to decimal 0. How does arithmetic work??

Well...to add two numbers, you need to know the sign, then you might have to
C TN

()
& A
Q AT RANWA Y\
'"f"" ARt

subtract (borrow and carry, etc.), and the sign might change...this is going to get £

ugly!

Signed Integers: How do we represent them??

Signed Integers: How do we represent them?

Behold: the "two's complement” circle:

In the early days of computing®, two's
complement was determined to be an
excellent way to store binary numbers.

INn two's complement notation, positive
numbers are represented as themselves
(ohew), and negative numbers are
represented as the two's complement of
themselves (definition to follow).

This leads to some amazing arithmetic
properties!

-/ -8 / *John von Neumann suggested it in 1945, for the EDVAC Computer."*--::* %

Two's Complement

A two's-complement number system encodes positive
and negative numbers In a binary number representation.
The weight of each bit Is a power of two, except for the
most significant bit, whose weight Is the negative of the
corresponding power of two.

Definition: Forvector £ = |2y 1, Zy_2,...,2To| of an w-bit

iInteger £,,_1Z4_2 ... T IS given by the following
formula:

w—2
B2T, (%) = —zy-12""" +) x;2".
1=0

B2T, means "Binary to Two's complement function”

In practice, a negative number in two's complement is obtained by
iInverting all the bits of its positive counterpart*, and then adding 1.

“Inverting all the bits of a number Is its "one’'s complement”

Two's Complement

INn practi

ce, a hegative number in two's

complement Is obtained by Inverting all

the bits

—xample:

of Its positive counterpart™, ana

thenadding 1,or:x = ~x + 1

‘he number 2 Is represented as normal in

oinary: 00~

110"
.
1110

0

-2 1S represented by inverting the bits, and adding 1:

0010 == 1101

Two's Complement

Trick: to

convert a positive number to Its

negative in two's complement, start

down al

—xample:

from the right of the number, and write

| the digits until you getto a 1.

Then invert the rest of the digits:

‘he number 2 Is represented as normal in

oinary: 00

gettoa1:
10

1110

0

Going from the right, write down numbers until you

"hen invert the rest of the digits:

Two's Complement

lo convert a negative number to a
positive number, perform the same
steps!

—xample: The number -5 Is represented in two's
complements as: 1011

b Is represented by inverting the bits, and adding 1:

1011 = 0100

0100
L
010"

Shortcut: start from the right, and write down
numbers until you get to a 1:

Now Iinvert all the rest of the digits:
0101

Two's Complement: Neat Properties

There are a number of useful properties
assoclated with two's complement
nuMMoers:

1. There is only one zero (yay!)

2. The highest order bit (left-most) is 1
for negative, O for positive (so it IS
easy to tell if a number is negative)

4 3. Adding two numbers is just...adding!
Example:

2+ -5=-3

0010 &= 2
+1011 = -5

1101 = -3 decimal (wow!)

Two's Complement: Neat Properties

More useftul properties:

4. Subtracting two numbers is simply
performing the two's complement on
one of them and then adding.
Example:
4-5=-1

0100 == 4, 0101 = &

Find the two's complement of 5: 1011
add:
0100 = 4

1011 @ -5

1111 = -1 decimal

Two's Complement: Neat Properties

More useftul properties:

5. Multiplication of two's complement
works just by multiplying (throw away
overflow digits).

Example: -2 * -3 =06

1110 = -2
Xx1101 &= -3

1110
0000
1110
+1110
100110 = 6

Two's Complement: Powers of two remain!

For vector & = [Zy_1,Zyw_2,- .., Zg| Of an w-bit

integer £,,_1Z4_2 ... o IS given by the following
formula:

w—2
B2Tw (i_é) — —Lyw-1 2'“’_1 + Z(BZZZ
1=0

From the definition of a two's complement
number, we can see that we are still

4 dealing with bits being equal to their
powers-of-two place: there isn't anything
magical about the placement of the bits:

5= 0 1 1
(17-29+0"2)+(172) + (1 *20) e,

Practice

Convert the following 4-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (1100) =

b, 7 (0111) =

c. 3(0011) =

d. -8 (1000) ==

Practice

Convert the following 4-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (1100) = 0100
p. 7 (0111) &= 1001
c. 3(0011) = 1101

d. -8 (1000) = 1000 (7! If you look at
the chart, +8 cannot be represented
N two's complement with 4 bits!)

Practice

Convert the following 8-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (11111100) = 00000100
b. 27 (00011011) = 11100101
c. -127 (10000001) = 01111111

d. 1(00000001) == 111111117

Casting Between Signed and Unsigned

Converting between two numbers in C can happen explicitly (using a
parenthesized cast), or implicitly (without a cast):

explicit implicit

ty; ty;
2lunsigned ux, uy; 2lunsigned ux, uy;

(int) ux; ux; // cast to signed
(unsigned) ty; = ty; // cast to unsigned

When casting: the underlying bits do not change, so there isn't any
conversion going on, except that the variable is treated as the type that it Is.
You cannot convert a signed number to its unsigned counterpart using a cast!

Casting Between Signed and Unsigned

When casting: the underlying bits do not change, so there isn't any
conversion going on, except that the variable is treated as the type that it is.
You cannot convert a signed number to its unsigned counterpart using a cast!

1|// test cast.c
2|#include<stdio.h>
3|#include<stdlib.h>

int main() {
int v = -12345;
unsigned int uv

printf("v

return O0;

./test cast

-12345, uv 4294954951

(unsigned 1int) v;

su\n",v,uv);

Casting Between Signed and Unsigned

printf has three 32-bit integer representations:

3d : signed 32-bit int
3u . unsigned 32-bit int
X . hex 32-bit Int

As long as the value Is a 32-bit type, printt will treat it according to the
formatter it Is applying:

int x = -1; S ./test printf
unsigned u = 3000000000; // 3 billion X 4294967295 -1
u 3000000000 -1294967296

printf("x 3d\n", x, X);
printf("u *d\n", u, u);

Signed vs Unsigned Number Wheels

0000

1111 0001

1110 0010

1101 0011

4-Ppit

two's complement
signed integer

representation

1100 0100

15 1

0010

0011

4-pit
1100 unsigned integer 0100
representation

Comparison between signed and unsigned integers

When a C expression has combinations of signed and unsigned variables, you

need to be careful!

if an operation is performed that has both a signed and an unsigned value, C
implicitly casts the signed argument to unsigned and performs the
operation assuming both numbers are non-negative. Let's take a look...

Expression

0 == 0U

-1 <0

-1 < 0U

2147483647 > -2147483647 - 1
21474836470 > -2147483647 - 1
2147483647 > (int)2147483648U
-1 > =2

(unsigned)-1 > -2

Type

Evaluation

Comparison between signed and unsigned integers

When a C expression has combinations of signed and unsigned variables, you
need to be caretul!

if an operation is performed that has both a signed and an unsigned value, C
implicitly casts the signed argument to unsigned and performs the
operation assuming both numbers are non-negative. Let's take a look...

Expression Type Evaluation
0 == 0U Unsignhed 1
-1 <0 Signed 1
-1 < 0U Unsigned 0
2147483647 > -2147483647 - 1 Signed 1
2147483647U > -2147483647 - 1 Unsigned 0
2147483647 > (int)2147483648U Signed 1
-1 > =2 Signed 1
(unsigned)-1 > =2 Unsigned 1

Note: In C, O is false and everything else is true. When C produces a boolean value, it allways chooses 1 to represent true.

Comparison between signed and unsigned integers

Let's try some more...a bit more abstractly.

int s1, s2, s3, s4;
unsigned int ul, u2, u3, u4;

Which many of the following
statements are true? (assume that
variables are set to values that place
them in the spots shown)

s3 > ul
u2 > ud
s2 > s4
sl > s2
ul > u2
sl > ul

111...111 000...000

100...000 011...111

Comparison between signed and unsigned integers

Let's try some more...a bit more abstractly.

int s1, s2, s3, s4;
unsigned int ul, u2, u3, u4;

Which many of the following
statements are true? (assume that
variables are set to values that place
them in the spots shown)

s3 > u3 : true
u2 > ud : true
s2 > s4 : false
sl > s2 : true
ul > u2 : true
sl > u3 : true

111...111 000...000

100...000 011...111

The sizeof Operator

As we have seen, integer types are limited by the number of bits they hold. On
the 64-bit myth machines, we can use the sizeof operator to find how many
bytes each type uses:

int main() {
printf("sizeof(char): %d\n", (int) sizeof(char));
printf("sizeof(short): %d\n", (int) sizeof(short));
printf("sizeof(int): %d\n", (int) sizeof(int));
printf("sizeof(unsigned int): %d\n", (int) sizeof(unsigned int));
printf("sizeof(long): %d\n", (int) sizeof(long));
printf("sizeof(long long): %d\n", (int) sizeof(long long));
printf("sizeof(size t): %d\n", (int) sizeof(size t));
printf("sizeof(void *): %d\n", (int) sizeof(void *));
return O0;

S ./sizeof

sizeof (char): 1 Type Width in bytes Width in bits
sizeof (short): 2 char 1 8
s%zeof(int?: 4 | short 9 16
sizeof (unsigned 1int): 4 .

sizeof(long): 8 int 4 32
sizeof(long long): 8 long 8 64
sizeof(size t): 8 void * g 64

sizeof(void *): 8

MIN and MAX values for integers

Because we now know how bit patterns for integers works, we can figure out the
maximum and minimum values, designated by INT MAX, UINT MAX, INT MIN,

(etc.), which are defined in 1imits.h

Type Width |Width Min in hex (name) Max in hex (name)

Yp (bytes) | (bits)

char 1 8 80 (CHAR MIN) 7F (CHAR MAX)

unsigned char 1 8 0 FF (UCHAR MAX)

short 2 16 8000 (SHRT MIN) 7FFF (SHRT MAX)

unsigned short 2 16 0 FFFF (USHRT MAX)

int 4 32 80000000 (INT MIN) JFFFFFFF (INT MAX)

unsigned 1int 4 32 0 FFFFFFFEF (UINT MAX)

long 8 64 8000000000000000 (LONG_MIN) |7FFFFFFFFFFFFFFF (LONG_MAX) | 400
unsigned long 8 64 0 FFFFFFFFFFFFFFFF (ULONG MAX) _é f:,;:* e

EXpanding the bit representation of a numbper

Sometimes we want to convert between two integers having different sizes.
E.9., ashort toan int, oran int to a long.

We might not be able to convert from a bigger data type to a smaller data

type, but we do want to always be able to convert from a smaller data type to
a bigger data type.

This Is easy for unsigned values: simply add leading zeros to the
representation (called "zero extension”).

unsigned short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned 1int 1 = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100Db

EXpanding the bit representation of a numbper

For signed values, we want the number to remain the same, just with more
pits. In this case, we perform a "sign extension” by repeating the sign of the
value for the new digits. E.g.,

short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100Db
int 1 = s;

0000 0000 0000 0000 0000 0OOOO 0000 0100Db

// conversion to 32-bit int, so i

short s = -4;
// short is a 16-bit format, so s = 1111 1111 1111 1100b
int 1 = s;

// conversion to 32-bit int, so i 1111 1111 1111 1111 1111 1111 1111 1100b

Sign-extension Example

// show bytes() defined on pg. 45, Bryant and O'Halloran

int main() {
short sx = -12345; // =12345
unsigned short usx = sx; // 53191
int x = sx; // -12345 $./sign_extension
unsigned ux = usx; // 53191 Sx = —12345: c7 of
printf("sx = 3d:\t", sx): usx = 53191: c/7 ct
show bytes((byte pointer) &sx, sizeof(short)); x = -12345: c/ ct ff ff
printf("usx = %u:\t", usx); ux = 53191: c/7 ctf 00 0O
show bytes((byte pointer) &usx, sizeof(unsigned short)); ' '
printf("x = 8d:\t", x); (careful: this was printed
shc.)w_byi':,es(ibzfte_p?lnter) &x, sizeof(int)); on the //tt/e-endiaﬂ myl‘h
printf("ux = %u:\t", ux); '
show bytes((byte pointer) &ux, sizeof(unsigned)); maCh/neS./)

return 0;

Truncating Numbers: Signed

What If we want to reduce the
number of bits that a number
holds®? E.qg.

What happens here” Let's ook at the bits in x (a 32-bit int), 53191.:

0000 0000 0000 0OOOO 1100 1111 1100 O111
When we cast x to a short, it only has 16-bits, and C truncates the number:
1100 1111 1100 O111

What is this number in decimal? Well, it must be negative (b/c of the initial
1), and itis -12345.

Truncating Numbers: Signed

What if we want to reduce the int x = 53191: // 53191
number of bits that a number short sx = (short) x; // -12345
holds? E.g. int y = sX;

This is a form of overflow! We have altered the value of the number.
Be careful!

We don't have enough bits to store the int In the short for the value we have
N the int, so the strange values occur.

What is y above? We are converting a short to an int, so we sign-extend,
and we get -12345!

1100 1111 1100 0111 becomes
1111 1111 1111 1111 1100 1111 1100 0111
Play around here: http://www.convertforfree.com/twos-complement-calculator/

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Signed

If the number does fit Into the int x = -3; /) -3
smaller representation in the short sx = (short) -3; // -3

current form, it will convert just |12t y = sx; // -3
fine.

x; 1111 1111 1111 1111 1111 1111 1111 1101 becomes
SX: 1111 1111 1111 1101

Play around here: http://www.convertforfree.com/twos-complement-calculator/

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Unsigneo

WWe can also lose information with
unsigned numbers:

Bit representation for x = 128000 (32-bit unsigned int):
0000 0000 0000 0001 1111 0100 0OO0O o0O0OO
Truncated unsigned short sx:

1111 0100 0000 00O0O

which equals 62464 decimal.

Converting back to an unsigned int, y = 62464

Overflow In Unsigned Addition

When integer operations overflow in C, the runtime does not produce an error:

#include<stdio.h>
#include<stdlib.h>

#include<limits.h> // for UINT MAX

int main() {

unsigned 1int a UINT MAX;
unsigned int b 1;
unsigned int c a + b;

su\n",a);
su\n",b);
b = %u\n",c);

return 0;

./unsigned overflow
= 4294967295

= 1

+ b =0

O O 9 W

Technically, unsigned integers in C don't
overflow, they just wrap. You need to be
aware of the size of your numbers. Here Is
one way to test if an addition will fail:

// for addition
#include <limits.h>
unsigned int a = <something>;

unsigned int X = <something>; Y N
if (a > UINT MAX - x) /* “a + x~ would overflow */;|[i 2= g

Overflow In Signed Addition

Signed overflow wraps around to the negative numbers:

R ——— | - { —

PSY - GANGNAM STYLE (2t AER) MV

officialpsy
- _ ——
T8 D suvscive REZEEE
+ Add to < Share sees More

Published on Jul 15, 2012
» Watch HANGOVER feat. Snoop Dogg M/V @
http://youtu. be/HKMNOIY cpHg

You lube fell into this trap — thelir view counter was a signed, 32-0bit int. They
fixed it after it was noticed, but for a while, the view count for Gangnam Style
(the first video with over INT MAX number of views) was negative.

Overflow In Signed Addition

INn the news on January 5, 2022 (!):

dl'S TECHNICA

GOOD THING ANDROID IS GREAT AT ROLLING OUT UPDATES —

Google fixes nightmare Android bug that
stopped user from calling 911

An integer overflow/underflow crash lets misbehaving apps lock users out of 911.

RON AMADEO - 1/5/2022, 3:09 PM

https://arstechnica.com/gadgets/2022/01/go0ogle-fixes-nightmare-android-bug-
that-stopped-user-from-calling-911/

https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-that-stopped-user-from-calling-911/
https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-that-stopped-user-from-calling-911/

Overflow In Signed Addition

Signed overflow wraps around to the negative numbers.

#include<stdio.h>
#include<stdlib.h> S . /Signed overflow

#include<limits.h> // for INT MAX

int main()
int a
int b
int c

return 0;

a = 2147483647
b =1
a + b = -2147483648

Technically, signed integers in C produce

2& E; f unaefined behavior when they overflow. On two's
b = 2d\n",c); complement machines (virtually all machines these
days), it does overtlow predictably. You can test to

see If your addition will be correct:

// for addition
#include <limits.h>
int a = <something>;

int x <something>;
if ((x > 0) && (a > INT MAX - x)) /* "a + x~ would overflow */;
if ((x < 0) && (a < INT MIN - x)) /* "a + x would underflow */;

References and Advanced Reading

*References:

e [WwO's complement calculator: http://www.convertforfree.com/twos-complement-
calculator/

o\\Vikipedia on Two's complement: https://en.wikipedia.org/wiki/

Two%2/7s complement

e [he sizeof operator: http://www.geeksforgeeks.org/sizeof-operator-c/

Advanced Reading:

eSigned overflow: https://stackoverflow.com/questions/16056/758/c-c-unsigned-
Integer-overtlow

e|nteger overflow in C: https://www.gnu.org/software/autoconf/manual/
autoconf-2.62/html node/Integer-Overflow.html
ettps://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-

truncated-how-is-the-new-value-determined

http://www.convertforfree.com/twos-complement-calculator/
http://www.convertforfree.com/twos-complement-calculator/
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
http://www.geeksforgeeks.org/sizeof-operator-c/
https://stackoverflow.com/questions/16056758/c-c-unsigned-integer-overflow
https://stackoverflow.com/questions/16056758/c-c-unsigned-integer-overflow
https://www.gnu.org/software/autoconf/manual/autoconf-2.62/html_node/Integer-Overflow.html
https://www.gnu.org/software/autoconf/manual/autoconf-2.62/html_node/Integer-Overflow.html
https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-truncated-how-is-the-new-value-determined
https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-truncated-how-is-the-new-value-determined

References and Advanced Reading

*References:

eargc and argv: http://crasseux.com/books/ctutorial/argc-and-argv.html

e [he C Language: https://en.wikipedia.org/wiki/C (programming language)
eKernighan and Ritchie (K&R) C: https://www.youtube.com/watch”?v=de2Hsvxaf8M
o(C Standard Library: http://www.cplusplus.com/reference/clibrary/
ehitps://en.wikipedia.org/wiki/Bitwise operations in C

eNttp://en.cppreference.com/w/c/language/operator precedence

*Advanced Reading:
e After All These Years, the World is Still Powered by C Programming
e|s C Still Relevant in the 21st Century?
o\\V\hy Every Programmer Should Learn G

http://crasseux.com/books/ctutorial/argc-and-argv.html
https://en.wikipedia.org/wiki/C_(programming_language)
https://www.youtube.com/watch?v=de2Hsvxaf8M
http://www.cplusplus.com/reference/clibrary/
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
http://en.cppreference.com/w/c/language/operator_precedence
https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
http://insights.dice.com/2014/12/08/c-still-relevant-21st-century/
https://www.pluralsight.com/blog/software-development/why-every-programmer-should-learn-c

- 1

1111 VR0 0001

1110

1101

1100

4-Dpit
two's complement
signed integer
representation

1011

1010
1001 4900 O111

0010

0011

0100

0101

0110

3

A

15]

0000

14 1117 0001 2
1110 0010
13 3
1101 0011
4-Dit
12— 1100 unsigned integer 0100 1 4
representation
1071 0101
11 5
1010 0110
9 14

