
CS107

Autumn 2023 December 9, 2023

CS107 Mock Final Exam

This is a closed book, closed note, closed computer exam, though you’re permitted to
refer to the reference sheet I’ve provided and the short cheat sheet you’ve prepared ahead
of time.

You have 180 minutes to complete all problems. You don’t need to #include any
libraries, and you needn’t use assert to guard against any errors. Understand that the
majority of points are awarded for concepts taught in CS107, and not prior classes. You
don’t get many points for for-loop syntax, but you certainly get points for proper use of
&, *, and the low-level C functions introduced in the course. Understand that the mock
final in no way obligates me to imitate its structure while writing your official final exam
for this coming Monday.

Good luck!

SUNet ID (@stanford.edu): ______________________________

Last Name: __

First Name: __

I accept the letter and spirit of Stanford’s Honor Code.

 [signed] __

 Score Grader

1. Linked Lists of Character Nodes [10] ______ ______

2. Assembly Code Analysis [20] ______ ______

3. Ellipses and printf [15] ______ ______

4. Implicit Allocators, Headers, Footers [15] ______ ______

Total [60] ______ ______

 2

Problem 1: Linked Lists of Packed Character Nodes [10 points]

Write a function arrayToList to convert an array of null-terminated strings…

into a linked list of perfectly sized character nodes, where each node wedges all of the
characters of a string and the address of the next node into one contiguous block:

Notice that each node of the list stores the individual characters of the string, followed by the
'\0' (represented by a shaded box), followed by an eight-byte address identifying the location
of the next node of the list (and if these eight bytes are all zeroes, then you’ve reached the
end of the list.)

array_to_list takes a standard array of char *s along with its length and constructs the
corresponding list of perfectly sized nodes. Your implementation:

• shouldn't worry about alignment restrictions. In practice, padding would sometimes be
inserted between the '\0's and the pointers, but don’t worry about that here.

• should return the address of the first character in the first node of the list, or NULL if the
array is empty.

• should make use of malloc, strlen, and strcpy as appropriate.
• can be implemented iteratively or recursively.

Use the space on the next page to present your implementation of array_to_list.

"Red"

"Yellow"

"Pink"

"Green"

"Purple" "Blue"

"Orange"

R e d

Y e l l o w

P i n k

G r e e n

and so forth

 3

char *array_to_list(char *strings[], size_t n) {

 4

Problem 2: Assembly Code Analysis [20 points]

The assembly code presented on the upper right was
generated by compiling a function called ella without
optimization—i.e., using -Og.

a. [14 points] First, fill in the blanks below so that ella

is programmatically consistent with the unoptimized
assembly you see on the right. Note that the C code
is nonsense and should just be a faithful reverse
engineering of the assembly. You may not typecast
anything.

char *ella(char *aretha[], char *diana) {

 char *vocalist = _______________________________;

 if (_______________________________)

 return _______________________________;

 if (_______________________________)

 return _______________________________;

 return _______________________________;
}

0x116d <+4>: push %r12
0x116f <+6>: push %rbp
0x1170 <+7>: push %rbx
0x1171 <+8>: mov %rdi,%r12
0x1174 <+11>: mov %rsi,%rbx
0x1177 <+14>: lea 0x4(%rsi),%rbp
0x117b <+18>: mov (%rdi),%rdi
0x117e <+21>: callq 0x1060 <strspn@plt>
0x1183 <+26>: test %rax,%rax
0x1186 <+29>: je 0x1195 <ella+44>
0x1188 <+31>: cmpb $0x0,(%rbx)
0x118b <+34>: jne 0x11a5 <ella+60>
0x118d <+36>: mov %rbp,%rax
0x1190 <+39>: pop %rbx
0x1191 <+40>: pop %rbp
0x1192 <+41>: pop %r12
0x1194 <+43>: retq
0x1195 <+44>: mov %rbp,%rsi
0x1198 <+47>: mov %rbp,%rdi
0x119b <+50>: callq 0x1070 <strstr@plt>
0x11a0 <+55>: mov %rax,%rbp
0x11a3 <+58>: jmp 0x118d <ella+36>
0x11a5 <+60>: mov %rbp,%rsi
0x11a8 <+63>: mov %r12,%rdi
0x11ab <+66>: callq 0x1169 <ella>
0x11b0 <+71>: mov %rax,%rbp
0x11b3 <+74>: jmp 0x118d <ella+36>

 5

Now, study the more aggressively optimized version of
ella presented on the right, and answer the questions
below. These short answer questions don’t really
require an understanding of the gcc optimizations
discussed in lecture, but rather a clear understanding of
what the compiler can get away with to make the code
run more quickly.

b. [2 points] The unoptimized version pushes three

caller-owned registers to the stack, and the
optimized version only pushes two. Why doesn’t
the optimized version need to push %r12?

c. [2 points] The unoptimized version clearly makes a recursive call to ella, whereas the
second version doesn’t. What is the second version doing instead, and why can it do it?

d. [2 points] The unoptimized version uses callq to invoke the strstr function whereas the
optimized version uses jmpq instead. What does callq do that jmpq doesn’t, and why can
the optimized version use jmpq instead of callq?

0x11b4 <+4>: push %rbp
0x11b5 <+5>: mov %rsi,%rbp
0x11b8 <+8>: push %rbx
0x11b9 <+9>: sub $0x8,%rsp
0x11bd <+13>: mov (%rdi),%rbx
0x11c0 <+16>: jmp 0x11ce <ella+30>
0x11c2 <+18>: nopw 0x0(%rax,%rax,1)
0x11c8 <+24>: cmpb $0x0,-0x4(%rbp)
0x11cc <+28>: je 0x11f8 <ella+72>
0x11ce <+30>: mov %rbp,%rsi
0x11d1 <+33>: mov %rbx,%rdi
0x11d4 <+36>: add $0x4,%rbp
0x11d8 <+40>: callq 0x1060 <strspn@plt>
0x11dd <+45>: test %rax,%rax
0x11e0 <+48>: jne 0x11c8 <ella+24>
0x11e2 <+50>: add $0x8,%rsp
0x11e6 <+54>: mov %rbp,%rsi
0x11e9 <+57>: mov %rbp,%rdi
0x11ec <+60>: pop %rbx
0x11ed <+61>: pop %rbp
0x11ee <+62>: jmpq 0x1070 <strstr@plt>
0x11f3 <+67>: nopl 0x0(%rax,%rax,1)
0x11f8 <+72>: add $0x8,%rsp
0x11fc <+76>: mov %rbp,%rax
0x11ff <+79>: pop %rbx
0x1200 <+80>: pop %rbp
0x1201 <+81>: retq

 6

Problem 3: Ellipses and printf [15 points]

The C standard allows for a variable number of arguments to be passed to a function,
provided the prototype makes use of the ellipses to clarify where the required arguments end
and the optional arguments begin. The prototype for printf, for instance, is:

int printf(const char *control, ...); // we’ll ignore the return value

The prototype mandates that a C string be passed in as the first argument. But after that, the
caller can provide zero, one, two, three, or even more arguments beyond that.

For our purposes, assume the implementation of printf allocates enough stack memory to
store all of the additional arguments, side by side, as a packed array of bytes. For instance, a
call to printf("%d %s %s\n", 153, "frisbee", "sunshine") would prompt printf to
allocate stack space for exactly 20 bytes—or rather, sizeof(int) + 2 * sizeof(char *)
bytes—and populate that space with the four-byte data representation of 153, followed by the
eight-byte data representation of the first char * value, followed by the eight-byte data
representation of the second char * value. Assuming the 'f' of "frisbee" and the 's' of
"sunshine" reside at addresses 0x453200 and 0x453220, respectively, the memory for this
stack array would be laid out like this:

The example above generalizes to all reasonable calls to printf. For example:

• A call to printf("%s %s %s %d %d", "abc", "def", "wxyz", 45, 55) would
allocate space for 32 bytes and pack together, in order, the three addresses and the
two integers. 3 * sizeof(char *) + 2 * sizeof(int) equal 32.

• A call to printf("%d %d %s %d %d", 1, 2, "3", 4, 5) would allocate space for 24
bytes: int, int, char *, int, int.

In all cases, printf essentially constructs a miniature stack frame and populates it with copies
of any additional arguments in the order they were supplied. Once printf assembles and
populates the array, it then calls a helper function—a function called myprintf—and passes
one the original control parameter verbatim and the base address of the packed array of
bytes as arguments one and two.

 void myprintf(const char *control, const void *args);

By doing so, myprintf has access to all of the material—the control string as a template of
what to print and the additional values needed to fill in any placeholders—to publish the
string to the console.

For simplicity, we’ll assume that the only placeholders ever present in control are %d and %s.
You can further assume the following core helper operations figure out how to print a C string
and an integer to standard output:

153 0x453200 0x453220

 7

void print_string(const char *str); // '%' will never be present in str
void print_int(int num);

The space below includes a partial implementation of myprintf, and you’re to complete it.
You’ll do so by manually crawling down the array of memory addressed by args, using the
control string to decide whether the next figure to be consumed from that memory is an int
or a char *. Once implemented, your myprintf would contribute to the following:

int main(int argc, const char *argv[]) {
 printf("My favorite numbers are %d, %d, and %d.\n", 28, 496, 8128);
 printf("You remind me of %s%d%s%s.\n", "R", 2, "D", "2");
 return 0;
}

and generate the following output:

My favorite numbers are 28, 496, and 8128.
You remind me of R2D2.

a) [7 points] Here’s the partial implementation of myprintf. You’re to work through the code
I provide you and complete the implementation. You can assume that args addresses a
properly assembled array of manually packed bytes as described above. If there were no
additional arguments, you can assume that args is NULL. You can also assume that every
'%' in the control string will be following by either a 'd' or an 's'.

void myprintf(const char *control, const void *args) {
 while (true) {
 const char *placeholder = strchr(control, '%');
 if (placeholder == NULL) placeholder = control + strlen(control);
 char buffer[placeholder - control + 1];
 strncpy(buffer, control, placeholder - control);
 buffer[placeholder - control] = '\0';
 print_string(buffer);
 control = placeholder;
 if (control[0] == '\0') break;
 // place the rest of the implementation in the space below

 8

b) [8 points] Describe what would be printed by each of the following calls to printf if it
just relies on the myprintf you’ve implemented above. If the call generates a
segmentation fault, then say so.

• printf("%s", 0, 0);

• printf("%d", "107");

• printf("%d %d", 555);

• printf("lots of smoke and mirrors", "lots", "of", "them");

 9

Problem 4: Implicit Allocators with Headers and Footers [15 points]

You are implementing a custom allocator that relies on an eight-byte header and an eight-
byte footer—a replica of the same node’s header—that overlays the last eight bytes of a free
node’s payload. The footer is used to implement left coalescing, which can be implemented
by free to reduce fragmentation.

The most significant bit of the header (and footer) records whether the node is free (1 free, 0
in-use). The second most significant bit records whether the node to its immediate left is free
(1 free, 0 otherwise). The remaining 62 bits encode the size of the entire node—header plus
payload—in bytes. All request sizes are rounded up to the nearest multiple of eight bytes, so
all payload addresses returned/accepted by malloc/free are aligned accordingly.

0x2000 2008 2010 2018 2020 2028 2030 2038 2040 2048 2050 2058 2060 2068 2070
size 40
left 0
free 1

 size 40
left 0
free 1

size 32
left 1
free 0

 size 48
left 0
free 1

 size 48
left 0
free 1

In the above diagram, the 32-byte payload with base address 0x2008 is free, the 24-byte
payload with base address 0x2030 is in use, and the 40-byte payload at address 0x2050 is free.
Note this allocator is technically an implicit one, as there’s no mention of linked lists anywhere.

Assume the following #define constants and global variables have already been set up:

#define HEAD_SIZE sizeof(size_t)
#define FOOT_SIZE HEAD_SIZE

// flags used to isolate free and left-free bits from payload size
#define FREE (1L << 63)
#define LEFT (1L << 62)
#define SIZE ______________

static size_t *heap_start; // base address of entire heap segment
static size_t heap_size; // number of bytes in the entire heap segment

a) [2 points] First off, note that the #define value for SIZE is blank! What expression—which

you must frame in terms of FREE and LEFT—should be used so that SIZE is a mask of 2 0’s
followed by 62 1’s? (The SIZE mask can then be used to isolate the payload-size portion of
a header or footer.)

 10

b) [2 points] You wonder whether it make sense to #define FREE, LEFT, and SIZE to be
0x8000000000000000, 0x4000000000000000, and 0x3FFFFFFFFFFFFFFF, respectively, so
that repeated reevaluation of 1L << 63, 1L << 62, and your expression for SIZE doesn’t
impact allocator throughput. After using callgrind to profile the number of instructions
executed on test scripts, you note that it doesn’t seem to make a difference, even when
your allocator is compiled at –Og? Give a reasonable explanation why that might be.

c) [5 points] Complete the implementation of the count_available_payload_bytes function,

which scans the heap from front to back and returns the total number of available payload
bytes. Your implementation will need to examine all nodes—both free and allocated—to
compute the answer, since the allocator is an implicit one.

 size_t count_available_payload_bytes() {

 11

d) [6 points] Complete the implementation of coalesce_left, which accepts the address of a
free node header and, if the node to its left is also free, merges the two into one larger
node. If the node to the left isn’t free, then coalesce_left should simply return without
doing anything.

 void coalesce_left(size_t *header) {

