
CS107  

Autumn 2023 December 9, 2023 

CS107 Mock Final Exam 
 

This is a closed book, closed note, closed computer exam, though you’re permitted to 
refer to the reference sheet I’ve provided and the short cheat sheet you’ve prepared ahead 
of time.  
 
You have 180 minutes to complete all problems. You don’t need to #include any 
libraries, and you needn’t use assert to guard against any errors. Understand that the 
majority of points are awarded for concepts taught in CS107, and not prior classes. You 
don’t get many points for for-loop syntax, but you certainly get points for proper use of 
&, *, and the low-level C functions introduced in the course. Understand that the mock 
final in no way obligates me to imitate its structure while writing your official final exam 
for this coming Monday. 
 
 
Good luck! 
 

SUNet ID (@stanford.edu): ______________________________ 
 
Last Name: __________________________________________ 
 
First Name: __________________________________________ 

 
 
I accept the letter and spirit of Stanford’s Honor Code. 
 
 
 
 
 [signed] __________________________________________________________ 
 

 

   Score Grader 

1. Linked Lists of Character Nodes [10] ______  ______ 

2. Assembly Code Analysis [20] ______  ______ 

3. Ellipses and printf [15] ______  ______ 

4. Implicit Allocators, Headers, Footers [15] ______  ______ 

 
Total [60] ______  ______  
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Problem 1: Linked Lists of Packed Character Nodes [10 points] 

Write a function arrayToList to convert an array of null-terminated strings… 
 
 
 
  
 
 
 
 
into a linked list of perfectly sized character nodes, where each node wedges all of the 
characters of a string and the address of the next node into one contiguous block: 
 
 
 
 
 
 
 
Notice that each node of the list stores the individual characters of the string, followed by the 
'\0' (represented by a shaded box), followed by an eight-byte address identifying the location 
of the next node of the list (and if these eight bytes are all zeroes, then you’ve reached the 
end of the list.) 
 
array_to_list takes a standard array of char *s along with its length and constructs the 
corresponding list of perfectly sized nodes.  Your implementation: 
 

• shouldn't worry about alignment restrictions. In practice, padding would sometimes be 
inserted between the '\0's and the pointers, but don’t worry about that here. 

• should return the address of the first character in the first node of the list, or NULL if the 
array is empty. 

• should make use of malloc, strlen, and strcpy as appropriate. 
• can be implemented iteratively or recursively. 
 

Use the space on the next page to present your implementation of array_to_list.  
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and so forth 



  3  

char *array_to_list(char *strings[], size_t n) { 
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Problem 2: Assembly Code Analysis [20 points] 

The assembly code presented on the upper right was 
generated by compiling a function called ella without 
optimization—i.e., using -Og.   
 
a. [14 points] First, fill in the blanks below so that ella 

is programmatically consistent with the unoptimized 
assembly you see on the right. Note that the C code 
is nonsense and should just be a faithful reverse 
engineering of the assembly. You may not typecast 
anything. 

 
 
 
 
 
 
 

char *ella(char *aretha[], char *diana) { 
 
 
 char *vocalist = _______________________________; 
 
 
   if (_______________________________) 
 
 
    return _______________________________; 
 
 
   if (_______________________________) 
 
 
    return _______________________________; 
 
 
  return _______________________________; 
} 

 
  

0x116d <+4>: push   %r12 
0x116f <+6>: push   %rbp 
0x1170 <+7>: push   %rbx 
0x1171 <+8>: mov    %rdi,%r12 
0x1174 <+11>: mov    %rsi,%rbx 
0x1177 <+14>: lea    0x4(%rsi),%rbp 
0x117b <+18>: mov    (%rdi),%rdi 
0x117e <+21>: callq  0x1060 <strspn@plt> 
0x1183 <+26>: test   %rax,%rax 
0x1186 <+29>: je     0x1195 <ella+44> 
0x1188 <+31>: cmpb   $0x0,(%rbx) 
0x118b <+34>: jne    0x11a5 <ella+60> 
0x118d <+36>: mov    %rbp,%rax 
0x1190 <+39>: pop    %rbx 
0x1191 <+40>: pop    %rbp 
0x1192 <+41>: pop    %r12 
0x1194 <+43>: retq    
0x1195 <+44>: mov    %rbp,%rsi 
0x1198 <+47>: mov    %rbp,%rdi 
0x119b <+50>: callq  0x1070 <strstr@plt> 
0x11a0 <+55>: mov    %rax,%rbp 
0x11a3 <+58>: jmp    0x118d <ella+36> 
0x11a5 <+60>: mov    %rbp,%rsi 
0x11a8 <+63>: mov    %r12,%rdi 
0x11ab <+66>: callq  0x1169 <ella> 
0x11b0 <+71>: mov    %rax,%rbp 
0x11b3 <+74>: jmp    0x118d <ella+36> 
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Now, study the more aggressively optimized version of 
ella presented on the right, and answer the questions 
below. These short answer questions don’t really 
require an understanding of the gcc optimizations 
discussed in lecture, but rather a clear understanding of 
what the compiler can get away with to make the code 
run more quickly. 
 
b. [2 points] The unoptimized version pushes three 

caller-owned registers to the stack, and the 
optimized version only pushes two. Why doesn’t 
the optimized version need to push %r12? 
 
 
 
 
 
 
 

c. [2 points] The unoptimized version clearly makes a recursive call to ella, whereas the 
second version doesn’t. What is the second version doing instead, and why can it do it? 
 
 
 
 
 
 
 
 
 

d. [2 points] The unoptimized version uses callq to invoke the strstr function whereas the 
optimized version uses jmpq instead. What does callq do that jmpq doesn’t, and why can 
the optimized version use jmpq instead of callq? 

 
 
  

0x11b4 <+4>: push   %rbp 
0x11b5 <+5>: mov    %rsi,%rbp 
0x11b8 <+8>: push   %rbx 
0x11b9 <+9>: sub    $0x8,%rsp 
0x11bd <+13>: mov    (%rdi),%rbx 
0x11c0 <+16>: jmp    0x11ce <ella+30> 
0x11c2 <+18>: nopw   0x0(%rax,%rax,1) 
0x11c8 <+24>: cmpb   $0x0,-0x4(%rbp) 
0x11cc <+28>: je     0x11f8 <ella+72> 
0x11ce <+30>: mov    %rbp,%rsi 
0x11d1 <+33>: mov    %rbx,%rdi 
0x11d4 <+36>: add    $0x4,%rbp 
0x11d8 <+40>: callq  0x1060 <strspn@plt> 
0x11dd <+45>: test   %rax,%rax 
0x11e0 <+48>: jne    0x11c8 <ella+24> 
0x11e2 <+50>: add    $0x8,%rsp 
0x11e6 <+54>: mov    %rbp,%rsi 
0x11e9 <+57>: mov    %rbp,%rdi 
0x11ec <+60>: pop    %rbx 
0x11ed <+61>: pop    %rbp 
0x11ee <+62>: jmpq   0x1070 <strstr@plt> 
0x11f3 <+67>: nopl   0x0(%rax,%rax,1) 
0x11f8 <+72>: add    $0x8,%rsp 
0x11fc <+76>: mov    %rbp,%rax 
0x11ff <+79>: pop    %rbx 
0x1200 <+80>: pop    %rbp 
0x1201 <+81>: retq 
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Problem 3: Ellipses and printf [15 points] 

The C standard allows for a variable number of arguments to be passed to a function, 
provided the prototype makes use of the ellipses to clarify where the required arguments end 
and the optional arguments begin.  The prototype for printf, for instance, is: 

 
int printf(const char *control, ...); // we’ll ignore the return value 
 

The prototype mandates that a C string be passed in as the first argument. But after that, the 
caller can provide zero, one, two, three, or even more arguments beyond that.   
 
For our purposes, assume the implementation of printf allocates enough stack memory to 
store all of the additional arguments, side by side, as a packed array of bytes. For instance, a 
call to printf("%d %s %s\n", 153, "frisbee", "sunshine") would prompt printf to 
allocate stack space for exactly 20 bytes—or rather, sizeof(int) + 2 * sizeof(char *) 
bytes—and populate that space with the four-byte data representation of 153, followed by the 
eight-byte data representation of the first char * value, followed by the eight-byte data 
representation of the second char * value. Assuming the 'f' of "frisbee" and the 's' of 
"sunshine" reside at addresses 0x453200 and 0x453220, respectively, the memory for this 
stack array would be laid out like this: 
 
 
 
The example above generalizes to all reasonable calls to printf.  For example: 
 

• A call to printf("%s %s %s %d %d", "abc", "def", "wxyz", 45, 55) would 
allocate space for 32 bytes and pack together, in order, the three addresses and the 
two integers. 3 * sizeof(char *) + 2 * sizeof(int) equal 32. 

• A call to printf("%d %d %s %d %d", 1, 2, "3", 4,  5) would allocate space for 24 
bytes: int, int, char *, int, int. 

 
In all cases, printf essentially constructs a miniature stack frame and populates it with copies 
of any additional arguments in the order they were supplied.   Once printf assembles and 
populates the array, it then calls a helper function—a function called myprintf—and passes 
one the original control parameter verbatim and the base address of the packed array of 
bytes as arguments one and two. 
 
     void myprintf(const char *control, const void *args);  
 
By doing so, myprintf has access to all of the material—the control string as a template of 
what to print and the additional values needed to fill in any placeholders—to publish the 
string to the console. 
 

For simplicity, we’ll assume that the only placeholders ever present in control are %d and %s.  
You can further assume the following core helper operations figure out how to print a C string 
and an integer to standard output: 

153 0x453200 0x453220 
 



  7  

 
void print_string(const char *str); // '%' will never be present in str 
void print_int(int num); 

 

The space below includes a partial implementation of myprintf, and you’re to complete it.  
You’ll do so by manually crawling down the array of memory addressed by args, using the 
control string to decide whether the next figure to be consumed from that memory is an int 
or a char *. Once implemented, your myprintf would contribute to the following: 
 

int main(int argc, const char *argv[]) { 
 printf("My favorite numbers are %d, %d, and %d.\n", 28, 496, 8128); 
 printf("You remind me of %s%d%s%s.\n", "R", 2, "D", "2"); 
 return 0; 
} 
 

and generate the following output: 
 
My favorite numbers are 28, 496, and 8128. 
You remind me of R2D2. 
 

a) [7 points] Here’s the partial implementation of myprintf. You’re to work through the code 
I provide you and complete the implementation. You can assume that args addresses a 
properly assembled array of manually packed bytes as described above. If there were no 
additional arguments, you can assume that args is NULL.  You can also assume that every 
'%' in the control string will be following by either a 'd' or an 's'. 

 
void myprintf(const char *control, const void *args) { 
 while (true) { 
   const char *placeholder = strchr(control, '%'); 
     if (placeholder == NULL) placeholder = control + strlen(control); 
    char buffer[placeholder - control + 1]; 
     strncpy(buffer, control, placeholder - control); 
     buffer[placeholder - control] = '\0'; 
     print_string(buffer);      
  control = placeholder; 
   if (control[0] == '\0') break; 
  // place the rest of the implementation in the space below 
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b) [8 points] Describe what would be printed by each of the following calls to printf if it 
just relies on the myprintf you’ve implemented above. If the call generates a 
segmentation fault, then say so. 

 

• printf("%s", 0, 0); 

 
 

 
 

 
 

 
 

• printf("%d", "107"); 

 
 

 

 

 

 

 

 

 
• printf("%d %d", 555); 

 
 

 

 

 

 

 

 

 
• printf("lots of smoke and mirrors", "lots", "of", "them"); 
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Problem 4: Implicit Allocators with Headers and Footers [15 points] 

You are implementing a custom allocator that relies on an eight-byte header and an eight-
byte footer—a replica of the same node’s header—that overlays the last eight bytes of a free 
node’s payload. The footer is used to implement left coalescing, which can be implemented 
by free to reduce fragmentation. 
 
The most significant bit of the header (and footer) records whether the node is free (1 free, 0 
in-use).  The second most significant bit records whether the node to its immediate left is free 
(1 free, 0 otherwise). The remaining 62 bits encode the size of the entire node—header plus 
payload—in bytes. All request sizes are rounded up to the nearest multiple of eight bytes, so 
all payload addresses returned/accepted by malloc/free are aligned accordingly. 
 

0x2000 2008 2010 2018 2020 2028 2030 2038 2040 2048 2050 2058 2060 2068 2070 
size 40 
left 0 
free 1 

   size 40 
left 0 
free 1 

size 32 
left 1 
free 0 

   size 48 
left 0 
free 1 

    size 48 
left 0 
free 1 

 
 
In the above diagram, the 32-byte payload with base address 0x2008 is free, the 24-byte 
payload with base address 0x2030 is in use, and the 40-byte payload at address 0x2050 is free.  
Note this allocator is technically an implicit one, as there’s no mention of linked lists anywhere. 
 
Assume the following #define constants and global variables have already been set up: 
 

#define HEAD_SIZE sizeof(size_t) 
#define FOOT_SIZE HEAD_SIZE 
 
// flags used to isolate free and left-free bits from payload size 
#define FREE (1L << 63) 
#define LEFT (1L << 62) 
#define SIZE ______________ 
 
static size_t *heap_start; // base address of entire heap segment 
static size_t heap_size;  // number of bytes in the entire heap segment 

 
a) [2 points] First off, note that the #define value for SIZE is blank!  What expression—which 

you must frame in terms of FREE and LEFT—should be used so that SIZE is a mask of 2 0’s 
followed by 62 1’s? (The SIZE mask can then be used to isolate the payload-size portion of 
a header or footer.) 
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b) [2 points] You wonder whether it make sense to #define FREE, LEFT, and SIZE to be 
0x8000000000000000, 0x4000000000000000, and 0x3FFFFFFFFFFFFFFF, respectively, so 
that repeated reevaluation of 1L << 63, 1L << 62, and your expression for SIZE doesn’t 
impact allocator throughput. After using callgrind to profile the number of instructions 
executed on test scripts, you note that it doesn’t seem to make a difference, even when 
your allocator is compiled at –Og? Give a reasonable explanation why that might be. 
 
 
 

 
 
 
 
 
 
c) [5 points] Complete the implementation of the count_available_payload_bytes function, 

which scans the heap from front to back and returns the total number of available payload 
bytes. Your implementation will need to examine all nodes—both free and allocated—to 
compute the answer, since the allocator is an implicit one. 

 
 size_t count_available_payload_bytes() { 
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d) [6 points] Complete the implementation of coalesce_left, which accepts the address of a 
free node header and, if the node to its left is also free, merges the two into one larger 
node. If the node to the left isn’t free, then coalesce_left should simply return without 
doing anything. 
 

 void coalesce_left(size_t *header) { 
 


