
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 11
The Heap, Continued

Reading: K&R 5.6-5.9 or Essential C section 6 on
the heap

2

Poll Check-in
How are you doing / how is everything going so far? Feel free to respond
however you’d like!

Respond on PollEv:
pollev.com/cs107
or text CS107 to 22333
once to join.

3

CS107 Topic 3
How can we effectively manage all types of memory in our programs?

Why is answering this question important?
• Shows us how we can pass around data efficiently with pointers (last time)
• Introduces us to the heap and allocating memory that we manually manage

(today)
• Helps us better understand use-after-free vulnerabilities, a common bug

(today)

assign3: implement a function using resizable arrays to read lines of any length from
a file and write 2 programs using that function to print the last N lines of a file and print
just the unique lines of a file. These programs emulate the tail and uniq Unix
commands!

4

Learning Goals
• Learn about the differences between the stack and the heap and when to use

each one
• Become familiar with the malloc, calloc, realloc and free functions for

managing memory on the heap
• Understand use-after-free vulnerabilities and vulnerability disclosure

5

Lecture Plan
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• realloc

cp -r /afs/ir/class/cs107/lecture-code/lect11 .

6

Lecture Plan
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• realloc

cp -r /afs/ir/class/cs107/lecture-code/lect11 .

7

Memory Layout
• The heap is a part of memory that you can manage

yourself.
• The heap is a part of memory below the stack that

you can manage yourself. Unlike the stack, the
memory only goes away when you delete it
yourself.

• Unlike the stack, the heap grows upwards as more
memory is allocated.

The heap is dynamic memory – memory that can be
allocated, resized, and freed during program
runtime.

Code

0

∞

Data (includes Heap)

Stack

8

Working with the heap
Working with the heap consists of 3 core steps:
1. Allocate memory with malloc/realloc/strdup/calloc
2. Assert heap pointer is not NULL
3. Free when done (more today!)

The heap is dynamic memory, so you may encounter many runtime errors,
even if your code compiles!

9

malloc

void *malloc(size_t size);
To allocate memory on the heap, use the malloc function (“memory allocate”)
and specify the number of bytes you’d like.

• This function returns a pointer to the starting address of the new memory. It
doesn’t know or care whether it will be used as an array, a single block of
memory, etc.

• void *means a pointer to generic memory. You can set another pointer
equal to it without any casting.

• The memory is not cleared out before being allocated to you!
• If malloc returns NULL, then there wasn’t enough memory for this request.

10

Always assert with the heap
Let’s write a function that returns an array of the first len multiples of mult.

int *array_of_multiples(int mult, int len) {
 int *arr = malloc(sizeof(int) * len);
 assert(arr != NULL);
 for (int i = 0; i < len; i++) {
 arr[i] = mult * (i + 1);
 }
 return arr;
}

• If an allocation error occurs (e.g. out of heap memory!), malloc will return
NULL. This is an important case to check for robustness.

• assert will crash the program if the provided condition is false. A memory
allocation error is significant, and we should terminate the program.

1
2
3
4
5
6
7
8

11

calloc and strdup
void *calloc(size_t nmemb, size_t size);

calloc is like malloc that zeros out the memory for you. It takes two
parameters, which are multiplied to calculate the number of bytes (nmemb *
size).
However, we want to default to malloc and use calloc only when we need to
zero out the space.

char *strdup(char *s);

strdup is a convenience function that returns a null-terminated, heap-
allocated string with the provided text, instead of you having to malloc and
copy in the string yourself. (like malloc + strcpy).

12

Lecture Plan
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• realloc

cp -r /afs/ir/class/cs107/lecture-code/lect11 .

13

Cleaning Up with free
void free(void *ptr);

• If we allocated memory on the heap and no longer need it, it is our
responsibility to free it.

• To do this, use the free command and pass in the starting address on the
heap for the memory you no longer need.

• Example:
 char *bytes = malloc(4);
 …
 free(bytes);

14

Free
void free(void *ptr);

When you free an allocation, you are freeing up what it points to. You are not
freeing the pointer itself. You can still use the pointer to point to something
else.

char *str = strdup("hello");
...
free(str);
str = strdup("hi");

15

free details
Even if you have multiple pointers to the
same block of memory, each memory
block should only be freed once.

You must free the address you
received in the previous allocation
call; you cannot free just part of a
previous allocation.

char *bytes = malloc(4);
char *ptr = bytes;
…
free(bytes);
…
free(ptr); ❌ Memory at this

address was already
freed!

char *bytes = malloc(4);
char *ptr = malloc(10);
…
free(bytes);
…
free(ptr + 1);

✅

❌

✅

16

Cleaning Up
You may need to free memory allocated by other functions if that function
expects the caller to handle memory cleanup.

 char *str = strdup("Hello!");
 …
 free(str); // our responsibility to free!

17

Cleaning Up
You may need to free memory allocated by other functions if that function
expects the caller to handle memory cleanup.

char *create_string(char ch, int num) {
 char *new_str = malloc(sizeof(char) * (num + 1));
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str; // caller must free
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str);
 free(str);
 return 0;
}

18

Memory Leaks
A memory leak is when you do not free memory you previously allocated.

char *str = strdup("hello");
str = strdup("hi"); // memory leak! Lost previous str

19

Memory Leaks
A memory leak is when you do not free memory you previously allocated.
• Your program should be responsible for cleaning up any memory it allocates

but no longer needs.
• If you never free any memory and allocate an extremely large amount, you

may run out of memory in the heap!
• However, memory leaks rarely (if ever) cause crashes.
• We recommend not to worry about freeing memory until your program is

written. Then, go back and free memory as appropriate.
• Valgrind is a very helpful tool for finding memory leaks!
• Tip: free as soon as you are done with a block of memory

20

Lecture Plan
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• realloc

cp -r /afs/ir/class/cs107/lecture-code/lect11 .

21

Example: Pig Latin
Let’s write a program that can convert text to Pig Latin! Simplified Pig Latin
rules:
• If the word starts with a vowel, append “way”: apple -> appleway
• Otherwise, move all starting consonants to the end and append “ay”: bridge ->

idgebray

We want to write a function char *pig_latin(const char *in) that returns the Pig
Latin version of the given string.
• Good use case for heap allocation – array size is unknown until we convert it to

Pig Latin! We’ll create and return a heap-allocated string.
• The caller must free the string when it is done.

22

Example: Pig Latin
We will also see an example of how to uncover memory leaks using Valgrind.

valgrind --leak-check=full --show-leak-kinds=all [program info here]

23

Demo: Pig Latin + Valgrind

pig_latin.c

24

Memory Leaks vs. Memory Errors
Memory Leak: we didn’t free all heap memory we allocated. Rarely causes
functionality issues, can generally be resolved after program is functionally
complete.

Memory Error: we used memory in an invalid way (accessing memory that
doesn’t belong to us, read uninitialized memory, etc.). Can cause gnarly
functionality issues, make sure to resolve immediately!

25

Lecture Plan
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• realloc

cp -r /afs/ir/class/cs107/lecture-code/lect11 .

26

realloc

void *realloc(void *ptr, size_t size);

• The realloc function takes an existing allocation pointer and enlarges to a new
requested size. It returns the new pointer.

• If there is enough space after the existing memory block on the heap for the
new size, realloc simply adds that space to the allocation.

• If there is not enough space, realloc moves the memory to a larger location,
frees the old memory for you, and returns a pointer to the new location.

27

realloc
char *str = strdup("Hello");
assert(str != NULL);
…

// want to make str longer to hold "Hello world!"
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);

strcat(str, addition);
printf("%s", str);
free(str);

28

realloc
• realloc only accepts pointers that were previously returned by malloc/etc.
• Make sure to not pass pointers to the middle of heap-allocated memory.
• Make sure to not pass pointers to stack memory.

29

Cleaning Up with free and realloc

You only need to free the new memory coming out of realloc—the previous
(smaller) one was already reclaimed by realloc.

char *str = strdup("Hello");
assert(str != NULL);
…
// want to make str longer to hold "Hello world!"
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);
strcat(str, addition);
printf("%s", str);
free(str);

30

Stack and Heap
• Generally, unless a situation requires dynamic allocation, stack allocation is

preferred. Often both techniques are used together in a program.
• Heap allocation is a necessity when:

• you have a very large allocation that could blow out the stack
• you need to control the memory lifetime, or memory must persist outside of a function

call
• you need to resize memory after its initial allocation

31

Recap
• Recap: The Heap So Far
• Freeing Memory
• Practice: Pig Latin + Valgrind
• realloc

Next time: C Generics

Lecture 11 takeaway: We
can allocate memory on
the heap to manage it
ourselves. We manipulate
heap memory via pointers.
We must free memory
when we are done with it,
and can resize prior
allocations with realloc.

32

Structs

33

Structs
A struct is a way to define a new variable type that is a group of other variables.

struct date { // declaring a struct type
 int month;
 int day; // members of each date structure
};
…

struct date today; // construct structure instances
today.month = 1;
today.day = 28;

struct date new_years_eve = {12, 31}; // shorter initializer syntax

34

Structs
Wrap the struct definition in a typedef to avoid having to include the word
struct every time you make a new variable of that type.

typedef struct date {
 int month;
 int day;
} date;
…

date today;
today.month = 1;
today.day = 28;

date new_years_eve = {12, 31};

35

Structs
If you pass a struct as a parameter, like for other parameters, C passes a copy of
the entire struct.

void advance_day(date d) {
 d.day++;
}

int main(int argc, char *argv[]) {
 date my_date = {1, 28};
 advance_day(my_date);
 printf("%d", my_date.day); // 28
 return 0;
}

36

Structs
If you pass a struct as a parameter, like for other parameters, C passes a copy of
the entire struct. Use a pointer to modify a specific instance.

void advance_day(date *d) {
 (*d).day++;
}

int main(int argc, char *argv[]) {
 date my_date = {1, 28};
 advance_day(&my_date);
 printf("%d", my_date.day); // 29
 return 0;
}

37

Structs
The arrow operator lets you access the field of a struct pointed to by a pointer.

void advance_day(date *d) {
 d->day++; // equivalent to (*d).day++;
}

int main(int argc, char *argv[]) {
 date my_date = {1, 28};
 advance_day(&my_date);
 printf("%d", my_date.day); // 29
 return 0;
}

38

Structs
C allows you to return structs from functions as well. It returns whatever is
contained within the struct.

date create_new_years_date() {
 date d = {1, 1};
 return d; // or return (date){1, 1};
}

int main(int argc, char *argv[]) {
 date my_date = create_new_years_date();
 printf("%d", my_date.day); // 1
 return 0;
}

39

Structs
sizeof gives you the entire size of a struct, which is the sum of the sizes of all its
contents.

typedef struct date {
 int month;
 int day;
 } date;

int main(int argc, char *argv[]) {
 int size = sizeof(date); // 8
 return 0;
}

40

Arrays of Structs
You can create arrays of structs just like any other variable type.

typedef struct my_struct {
 int x;
 char c;
} my_struct;

…

my_struct array_of_structs[5];

41

Arrays of Structs
To initialize an entry of the array, you must use this special syntax to confirm the
type to C.

typedef struct my_struct {
 int x;
 char c;
} my_struct;

…

my_struct array_of_structs[5];
array_of_structs[0] = (my_struct){0, 'A'};

42

Arrays of Structs
You can also set each field individually.

typedef struct my_struct {
 int x;
 char c;
} my_struct;

…
my_struct array_of_structs[5];
array_of_structs[0].x = 2;
array_of_structs[0].c = 'A';

43

Extra Practice

44

char *str = strdup("Hello");
assert(str != NULL);
char *ptr = str + 1;
for (int i = 0; i < 5; i++) {
 int *num = malloc(sizeof(int));
 *num = i;
 printf("%s %d\n", ptr, *num);
}
printf("%s\n", str);

Goodbye, Free Memory
Where/how should we free memory below so that all memory is freed properly?

🤔

1
2
3
4
5
6
7
8
9

Recommendation: Don’t
worry about putting in frees
until after you’re finished
with functionality.
Memory leaks will rarely
crash your CS107 programs.

45

char *str = strdup("Hello");
assert(str != NULL);
char *ptr = str + 1;
for (int i = 0; i < 5; i++) {
 int *num = malloc(sizeof(int));
 *num = i;
 printf("%s %d\n", ptr, *num);
 free(num);
}
printf("%s\n", str);
free(str);

Goodbye, Free Memory
Where/how should we free memory below so that all memory is freed properly?

1
2
3
4
5
6
7
8
9
10
11

Recommendation: Don’t
worry about putting in frees
until after you’re finished
with functionality.
Memory leaks will rarely
crash your CS107 programs.

46

strcat_extend
Write a function that takes in a heap-allocated str1, enlarges it, and concatenates
str2 onto it.

char *strcat_extend(char *heap_str, const char *concat_str) {
 (_________________(1)__________________);
 heap_str = realloc(___(2A)___,___(2B)___);
 (_________________(3)__________________);
 strcat(___(3A)___, ___(3B)___);
 return heapstr;
}

1
2
3
4
5
6
7 char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);
free(str);

Example usage:

47

strcat_extend
Write a function that takes in a heap-allocated str1, enlarges it, and concatenates
str2 onto it.

char *strcat_extend(char *heap_str, const char *concat_str) {
 int new_length = strlen(heap_str) + strlen(concat_str) + 1;
 heap_str = realloc(heap_str, new_length);
 assert(heap_str != NULL);
 strcat(heap_str, concat_str);
 return heapstr;
}

1
2
3
4
5
6
7 char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);
free(str);

Example usage:

