
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 12
Disclosure, Partiality, Generics and Void *

2

CS107 Topic 4: How can we
use our knowledge of

memory and data
representation to write

code that works with any
data type?

3

CS107 Topic 4
How can we use our knowledge of memory and data representation to write
code that works with any data type?

Why is answering this question important?
• Writing code that works with any data type lets us write more generic,

reusable code while understanding potential pitfalls (today)
• Allows us to learn how to pass functions as parameters, a core concept in

many languages (next time)

assign4: implement your own version of the ls command, a function to generically
find and insert elements into a sorted array, and a program using that function to sort
the lines in a file like the sort command.

4

Learning Goals
• Learn about the potential harm from vulnerabilities, challenges to proper

disclosure of vulnerabilities, and how we weigh competing interests
• Learn how to write C code that works with any data type.
• Learn about how to use void * and avoid potential pitfalls.

5

Lecture Plan
• Vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

6

Lecture Plan
• Vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

7

Use-After-Free
“Use-After-Free” is a bug where you continue to use heap memory after you
have freed it.

This is possible because free() doesn’t change the pointer passed in, it just frees
the memory it points to.

char *bytes = malloc(4);
char *ptr = bytes;
…
free(bytes);
strncpy(ptr, argv[1], 3);

❌ Memory at this address was
already freed, but now we are
using it!

We freed bytes but did not
set ptr to NULL

8

Use-After-Free
• What happens when we have a use-after-free bug? Undefined Behavior / a

memory error!
• Maybe the memory still has its original contents?
• Maybe the memory is used to store some other heap data now?

• Use-after-free is not just a functionality issue; it can cause a range of
unintended behavior, including accessing/modifying memory you shouldn’t be
accessing

It’s our job as programmers to find and fix use-after-free and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with our code.

9

Use-After Free as a Vulnerability
• Use After Free Vulnerabilities in CVE database
• Use-after-free in Chrome (2020)
• Google’s attempts to reduce Chrome use-after-free vulnerabilities (2021)
• Use-after-free in iOS (2020)
• Google 2023 Chrome fixes include use-after-free vulnerability and heap buffer

overflow (2023)
• Adobe Acrobat Reader use-after-free vulnerability enables arbitrary code

execution (2023)

https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2019/CVE-2019-7286.html
https://www.forbes.com/sites/daveywinder/2023/01/11/google-kickstarts-2023-with-17-chrome-security-vulnerability-updates-for-windows-mac--linux/?sh=1ec297a06524
https://www.forbes.com/sites/daveywinder/2023/01/11/google-kickstarts-2023-with-17-chrome-security-vulnerability-updates-for-windows-mac--linux/?sh=1ec297a06524
https://nvd.nist.gov/vuln/detail/CVE-2023-21608

10

What should someone do if they
find a vulnerability? How can we

incentivize responsible disclosure?

11

Disclosure
Various roles in this process: users (those at risk), makers (e.g., software
company), security researchers (who found the vulnerability), bad actors (who
wish to exploit the issue to harm users), etc.
• Users want to be protected with secure software
• Makers want to make their software secure and not have it exploited – they

probably want to have time to fix vulnerabilities before they are made public
• Security researchers want their issues to be fixed and be rewarded for finding

them
• Bad actors want to learn about vulnerabilities before they are patched

12

Full Disclosure
One approach is to make vulnerabilities public as soon as they are found.
Vulnerabilities unknown to the software maker before release are called “zero-
day vulnerabilities” because they “have 0 days to fix the problem”.
• puts pressure on the maker to fix it quickly
• discloses the vulnerability to the public as soon as it’s found
• Leaves users vulnerable until the maker releases a patch

Few people now endorse this approach due to its drawbacks.

13

Responsible Disclosure
Another approach is to privately alert the software maker to the vulnerability
to fix it in a reasonable amount of time before publicizing the vulnerability.
This is called “responsible disclosure”:
• Contacts the makers of the software
• Informs them about the vulnerability
• Negotiates a reasonable timeline for a patch or fix
• Considers a deadline extension if necessary
time passes while the developers fix the bug
• Works with the developers to add the vulnerability to CVE Details

https://www.cvedetails.com/ , from which it is added to the National
Vulnerability Database https://nvd.nist.gov/

https://www.cvedetails.com/
https://nvd.nist.gov/

14

Responsible Disclosure
Responsible disclosure is the most common approach, and it is recommended
by the ACM code of ethics:

Responsible disclosure is the approach more consistent with the ACM Code of Ethics. By
keeping the existence of the vulnerability secret for a longer amount of time, it reduces the
chance of harm to others (Principle 1.2). It also supports more robust patching (Principles 2.1,
2.9, and 3.6), as the company can take more time to develop the patch and confirm that it will
not induce unintended consequences. Full disclosure puts individuals at risk of harm sooner,
and those harms may be irreversible and onerous (contravening Principles 1.2 and 3.1). As
such, full disclosure should the exception and should only be used when attempts at
responsible disclosure have failed. Furthermore, the individual committing to the full
disclosure needs to consider carefully the risks that they are imposing on others and be willing
to accept the moral and possibly legal consequences (Principles 2.3 and 2.5).

15

Vulnerability Commercialization
Various entities may want to financially reward people for finding and reporting
vulnerabilities:
• Software makers want to know about vulnerabilities in their software
• Other entities want to know about unpatched vulnerabilities to exploit them

16

Bug Bounty Programs
Many companies now offer “Bug Bounties,” or rewards for responsible
disclosure.

Good Version of a bug bounty process:
• Responsible disclosure process is followed
• Company is buying information & time to fix the bug
Bad version of a bug bounty process:
• Company does not fix the bug or notify the public.
• Not knowing what vulnerabilities exist makes it harder for users to calibrate

trust
• Company is effectively buying silence

17

Vulnerabilities Equities Process
The US federal government is one of the largest discoverers and purchasers of 0-
day vulnerabilities.

It follows a “Vulnerabilities Equities Process” (VEP) to determine which
vulnerabilities to responsibly disclose and which to keep secret and use for
espionage or intelligence gathering.

VEP claimed in 2017 that 90% of vulnerabilities are disclosed, but it is not clear
what the impact or scope of the un-disclosed 10% of vulnerabilities are.

More reading here and here

https://obamawhitehouse.archives.gov/blog/2014/04/28/heartbleed-understanding-when-we-disclose-cyber-vulnerabilities
https://www.wired.com/story/vulnerability-equity-process-charter-transparency-concerns/?utm_source=WIR_REG_GATE

18

Concerns with VEP
• Lack of transparency: little oversight as to whether the “bias towards

responsible disclosure” is consistently upheld
• Harm of omission: withholding the opportunity to fix the vulnerability means

that another actor could re-discover and use it
• Risk of stockpiling: Other people can hack into the stored 0-days and use them,

as in the “Shadowbrokers” attack which led to serious ransomware attacks on
hospitals and transportation systems
• Intended use: NSA’s intended use of vulnerabilities may be concerning, as in

PRISM surveillance program.

19

How do we weigh competing
stakeholder interests here, such as

country vs. individual?

20

Partiality
Partiality holds that it is acceptable to give preferential treatment to some
people based on our relationships to them or shared group membership
with them.
Impartiality, involves “acting from a position that acknowledges that all
persons are ... equally entitled to fundamental conditions of well-being
and respect.”

21

Partiality

self family friends state world

22

Partiality: preference
towards own family, friends,

and state is morally
acceptable or even required

Partial Cosmpolitanism:
limited preference towards

own state acceptable

Universal Care: preference
towards family acceptable

but not towards state

Impartial Benevolence:
same moral responsibilities

towards all people

Degrees of Partiality

23

Case Study: EternalBlue

2012-2017: NSA
secretly stores the
EternalBlue Microsoft
vulnerability and uses
it to spy on both US
and non-US citizens.

early 2017:
EternalBlue stolen by
hacker group the
ShadowBrokers. NSA
discloses EternalBlue
to Microsoft.

March 14, 2017:
Microsoft releases a
patch for the
vulnerability.

May 12, 2017:
EternalBlue is the basis
of the WannaCry and
other ransomware
attacks, leading to
downtime in critical
hospital and city
systems and over $1
billion of damages.

24

Microsoft’s Argument
“[T]his attack provides yet another example of why the stockpiling of
vulnerabilities by governments is such a problem. ...
We need governments to consider the damage to civilians that comes from
hoarding these vulnerabilities and the use of these exploits.
This is one reason we called in February for a new “Digital Geneva Convention”
to govern these issues, including a new requirement for governments to report
vulnerabilities to vendors, rather than stockpile, sell, or exploit them.
And it’s why we’ve pledged our support for defending every customer
everywhere in the face of cyberattacks, regardless of their nationality.”

Full post here

https://blogs.microsoft.com/on-the-issues/2017/05/14/need-urgent-collective-action-keep-people-safe-online-lessons-last-weeks-cyberattack/

25

Critical Questions
• Do we have special obligations to our own country and to protect our people?

If so, what would this mean?
• If intentionally exploiting a vulnerability is wrong when done by a private

citizen, is it equally wrong when done by the government?
• Should I be loyal to my country, a citizen of the world, or both?
• When should I give preference to my family members and when should I strive

to treat all equally?

What you choose matters – the moral obligations you take on constitute who
you are.

26

Partiality: preference
towards own family, friends,

and state is morally
acceptable or even required

Partial Cosmpolitanism:
limited preference towards

own state acceptable

Universal Care: preference
towards family acceptable

but not towards state

Impartial Benevolence:
same moral responsibilities

towards all people

Revisiting EternalBlue

MicrosoftFederal Government

27

Partiality Takeaways
• Understanding partiality helps us understand how we balance cases of

competing interests and where we may personally fall on this spectrum.
• In order to evaluate situations, it’s critical to understand the good and the bad

that may come of it (e.g. EternalBlue). Better understanding privacy and
privacy concerns is critical to this! (more later)

28

Lecture Plan
• Vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

29

Generics
• We always strive to write code that is as general-purpose as possible.
• Generic code reduces code duplication and means you can make

improvements and fix bugs in one place rather than many.
• Generics is used throughout C for functions to sort any array, search any array,

free arbitrary memory, and more.
• How can we write generic code in C? (Pointers are key!)

30

Lecture Plan
• Vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

31

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap

32

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap
Stack

Address Value
…

0xff14 2
0xff10 5

…

x
main()

y

33

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap
Stack

Address Value
…

0xff14 2
0xff10 5

…

0xf18 0xff10
0xf10 0xff14

…

x

b

main()

swap_int()

y

a

34

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap
Stack

Address Value
…

0xff14 2
0xff10 5

…

0xf18 0xff10
0xf10 0xff14
0xf0c 2

…

x

b

main()

swap_int()

y

a
temp

35

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap
Stack

Address Value
…

0xff14 5
0xff10 5

…

0xf18 0xff10
0xf10 0xff14
0xf0c 2

…

x

b

main()

swap_int()

y

a
temp

36

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap
Stack

Address Value
…

0xff14 5
0xff10 2

…

0xf18 0xff10
0xf10 0xff14
0xf0c 2

…

x

b

main()

swap_int()

y

a
temp

37

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap
Stack

Address Value
…

0xff14 5
0xff10 2

…

x
main()

y

38

“Oh, when I said ’numbers’
I meant shorts, not ints.”

😑

39

void swap_short(short *a, short *b) {
 short temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 short x = 2;
 short y = 5;
 swap_short(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap
Stack

Address Value
…

0xff12 2
0xff10 5

…

0xf18 0xff10
0xf10 0xff12
0xf0e 2

…

x

b

main()

swap_short()

y

a
temp

40

“You know what, I goofed.
We’re going to use strings.
Could you write something

to swap those?”

😤

41

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xff18 0xc
0xff10 0xe

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x
main()

y

DATA SEGMENT

42

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xff18 0xc
0xff10 0xe

…

0xf18 0xff10
0xf10 0xff18

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a

DATA SEGMENT

43

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xff18 0xc
0xff10 0xe

…

0xf18 0xff10
0xf10 0xff18
0xf08 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

44

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xff18 0xe
0xff10 0xe

…

0xf18 0xff10
0xf10 0xff18
0xf08 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

45

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xff18 0xe
0xff10 0xc

…

0xf18 0xff10
0xf10 0xff18
0xf08 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main()

swap_string()

y

a
temp

DATA SEGMENT

46

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xff18 0xe
0xff10 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x
main()

y

DATA SEGMENT

47

“Awesome! Thanks. We
also have 20 custom struct

types. Could you write
swap for those too?”

🤬

48

Generic Swap
What if we could write one function to swap two values of any single type?

void swap_int(int *a, int *b) { … }
void swap_float(float *a, float *b) { … }
void swap_size_t(size_t *a, size_t *b) { … }
void swap_double(double *a, double *b) { … }
void swap_string(char **a, char **b) { … }
void swap_mystruct(mystruct *a, mystruct *b) { … }
…

49

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

void swap_short(short *a, short *b) {
 short temp = *a;
 *a = *b;
 *b = temp;
}

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

Generic Swap

50

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

void swap_short(short *a, short *b) {
 short temp = *a;
 *a = *b;
 *b = temp;
}

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

Generic Swap
All 3:
• Take pointers to values to

swap
• Create temporary storage to

store one of the values
• Move data at b into where a

points
• Move data in temporary

storage into where b points

51

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

Generic Swap

52

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

 4 bytes

 2 bytes

 8 bytes

Problem: each type may need a different size temp!

Generic Swap

int temp = *data1ptr;

short temp = *data1ptr;

char *temp = *data1ptr;

53

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

 4 bytes

 2 bytes

 8 bytes

Problem: each type needs to copy a different amount of data!

Generic Swap

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

54

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

 4 bytes

 2 bytes

 8 bytes

Problem: each type needs to copy a different amount of data!

Generic Swap

*data2ptr = temp;

*data2ptr = temp;

*data2ptr = temp;

55

C knows the size of temp,
and knows how many bytes

to copy, because of the
variable types.

56

Is there a way to make a
version that doesn’t care
about the variable types?

57

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

Generic Swap

58

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

Generic Swap

59

void swap(void *data1ptr, void *data2ptr) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

Generic Swap

60

void swap(void *data1ptr, void *data2ptr) {
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

61

void swap(void *data1ptr, void *data2ptr) {
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

62

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

63

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

64

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 void temp; ???
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

65

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

temp is nbytes of memory,
since each char is 1 byte!

66

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

Now, how can we copy in what
data1ptr points to into temp?

67

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 temp = *data1ptr; ???
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

Now, how can we copy in what
data1ptr points to into temp?

68

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 temp = *data1ptr; ???
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

We can’t dereference a void * (or set an array
equal to something). C doesn’t know what it
points to! Therefore, it doesn’t know how many
bytes there it should be looking at.

69

memcpy
memcpy is a function that copies a specified number of bytes at one address to
another address.

void *memcpy(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location pointed to by dest. (It
also returns dest). It does not support regions of memory that overlap.

int x = 5;
int y = 4;
memcpy(&x, &y, sizeof(x)); // like x = y

memcpy must take pointers to the bytes to work with to
know where they live and where they should be copied to.

70

memmove
memmove is the same as memcpy but supports overlapping regions of memory.
(Unlike its name implies, it still “copies”).

void *memmove(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location pointed to by dest. (It
also returns dest).

71

memmove
When might memmove be useful?

1 2 3 4 5 6 7

4 5 6 7 5 6 7

72

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 temp = *data1ptr; ???
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

We can’t dereference a void *. C doesn’t know
what it points to! Therefore, it doesn’t know how
many bytes there it should be looking at.

73

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 temp = *data1ptr; ???
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

Assuming data to be swapped is not overlapping, how can memcpy
help us here? Respond with your thoughts on PollEv:
pollev.com/cs107 or text CS107 to 22333 once to join.

void *memcpy(void *dest, const void *src, size_t n);

74

75

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

76

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

We can copy the bytes ourselves into temp! This
is equivalent to temp = *data1ptr in non-generic
versions, but this works for any type of any size.

77

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Generic Swap

How can we copy data2 to the location of data1?

78

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 *data1ptr = *data2ptr; ???
 // copy data in temporary storage to location of data2
}

Generic Swap

How can we copy data2 to the location of data1?

79

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
}

Generic Swap

How can we copy data2 to the location of data1?
memcpy!

80

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
}

Generic Swap

How can we copy temp’s data to the location of
data2?

81

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
 memcpy(data2ptr, temp, nbytes);
}

Generic Swap

How can we copy temp’s data to the location of
data2? memcpy!

82

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
 memcpy(data2ptr, temp, nbytes);
}

Generic Swap

int x = 2;
int y = 5;
swap(&x, &y, sizeof(x));

83

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
 memcpy(data2ptr, temp, nbytes);
}

Generic Swap

short x = 2;
short y = 5;
swap(&x, &y, sizeof(x));

84

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
 memcpy(data2ptr, temp, nbytes);
}

Generic Swap

char *x = "2";
char *y = "5";
swap(&x, &y, sizeof(x));

85

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
 memcpy(data2ptr, temp, nbytes);
}

Generic Swap

mystruct x = {…};
mystruct y = {…};
swap(&x, &y, sizeof(x));

86

C Generics
• We can use void * and memcpy to handle memory as generic bytes.
• If we are given where the data of importance is, and how big it is, we can

handle it!

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 memcpy(temp, data1ptr, nbytes);
 memcpy(data1ptr, data2ptr, nbytes);
 memcpy(data2ptr, temp, nbytes);
}

88

Lecture Plan
• Vulnerabilities, disclosure and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls

cp -r /afs/ir/class/cs107/lecture-code/lect12 .

89

Void * Pitfalls
• void *s are powerful, but dangerous - C cannot do as much checking!
• E.g. with int, C would never let you swap half of an int. With void *s, this can

happen! (How? Let’s find out!)

90

Demo: Void *s Gone Wrong

swap.c

91

Void *Pitfalls
Void * has more room for error because it manipulates arbitrary bytes without
knowing what they represent. This can result in some strange memory
Frankensteins!

http://i.ytimg.com/vi/10gPoYjq3EA/hqdefault.jpg

93

Recap
• Vulnerabilities, Disclosure

and partiality
• Overview: Generics
• Generic Swap
• Generics Pitfalls

Next time: More Generics,
and Function Pointers

Lecture 12 takeaway: Vulnerabilities
should be responsibly disclosed, and
partiality helps us better understand
competing interests such as with
vulnerability disclosure. We can use
void *, memcpy and memmove to
manipulate data even if we don’t know
its type. void *s have no type checking,
so we must be vigilant!

94

Overflow Slides

95

Tips: C to English
• Translate C into English (function/variable declarations):
 https://cdecl.org/
• Pointer arithmetic: (char *) cast means byte address.

What is the value of elt in the below (intentionally convoluted) code?

 int arr[] = {1, 2, 3, 4};
 void *ptr = arr;
 int elt = *(int *)((char *) ptr + sizeof(int));

🤔
Code clarity: Consider breaking the last
line into two lines! (1) pointer
arithmetic, (2) int cast + dereference.

https://cdecl.org/

96

Exercise: Array Rotation
Exercise: You’re asked to provide an implementation for a function called
rotate with the following prototype:

 void rotate(void *front, void *separator, void *end);

The expectation is that front is the base address of an array, end is the past-
the-end address of the array, and separator is the address of some element
in between. rotate moves all elements in between front and separator
to the end of the array, and all elements between separator and end move
to the front.

rotate.c

97

Exercise: Array Rotation

1 2 3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 1 2 3

front separator end

int array[7] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
rotate(array, array + 3, array + 10);

Before:

After:

98

Exercise: Array Rotation
Exercise: Implement rotate to generate the provided output.

int main(int argc, char *argv[]) {
 int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 print_int_array(array, 10); // intuit implementation J
 rotate(array, array + 5, array + 10);
 print_int_array(array, 10);
 rotate(array, array + 1, array + 10);
 print_int_array(array, 10);
 rotate(array + 4, array + 5, array + 6);
 print_int_array(array, 10);
 return 0;
}

Output:
myth52:~/lect8$./rotate
Array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Array: 6, 7, 8, 9, 10, 1, 2, 3, 4, 5
Array: 7, 8, 9, 10, 1, 2, 3, 4, 5, 6
Array: 7, 8, 9, 10, 2, 1, 3, 4, 5, 6
myth52:~/lect8$

99

1 2 3 4 5 6 7 8 9 10

front separator end

4 5 6 7 8 9 10 8 9 10

front separator end

Before
rotate:

Before
last step:

1 2 3temp

The inner workings of rotate

100

Exercise: Array Rotation
Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.
And here’s that properly implemented function!

 void rotate(void *front, void *separator, void *end) {
 int width = (char *)end - (char *)front;
 int prefix_width = (char *)separator - (char *)front;
 int suffix_width = width - prefix_width;

 char temp[prefix_width];
 memcpy(temp, front, prefix_width);
 memmove(front, separator, suffix_width);
 memcpy((char *)end - prefix_width, temp, prefix_width);
 }

