
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 16
Assembly: Arithmetic and Logic

Reading: B&O 3.5-3.6

2

CS107 Topic 5
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better

code
• We can learn how to reverse engineer and exploit programs at the assembly

level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

3

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

Last Lecture This Lecture

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

4

Helpful Assembly Resources
• Course textbook (reminder: see relevant readings for each lecture on the

Calendar page, http://cs107.stanford.edu/calendar.html)
• CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-

64-reference.pdf
• CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html

http://cs107.stanford.edu/calendar.html
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/resources/x86-64-reference.pdf
http://cs107.stanford.edu/guide/x86-64.html

5

Learning Goals
• Learn how to perform arithmetic and logical operations in assembly
• Begin to learn how to read assembly and understand the C code that

generated it

6

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

7

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

8

mov
The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

9

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) What’s in %rax

4(%rax) What’s in %rax, plus 4

(%rax, %rdx) Sum of what’s in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

We calculate this value and then go to that address.

10

Practice #2: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x11 is stored at address 0x10C, 0xAB is
stored at address 0x104, 0x100 is stored in register %rax and 0x3 is stored in
%rdx.

1. mov $0x42,(%rax)
2. mov 4(%rax),%rcx
3. mov 9(%rax,%rdx),%rcx

Imm(rb, ri) is equivalent to address Imm + R[rb] + R[ri]

Displacement: positive or
negative constant (if missing, = 0)

Base: register
(if missing, = 0)

Index: register
(if missing, = 0)

11

Operand Forms: Scaled Indexed

mov (,%rdx,4),______

mov _______,(,%rdx,4)

Copy the value at the address which
is (4 times the value in register

%rdx) into some destination.

Copy the value from some source into the
memory at the address which is (4 times

the value in register %rdx).

The scaling factor
(e.g. 4 here) must
be hardcoded to
be either 1, 2, 4
or 8.

12

Operand Forms: Scaled Indexed

mov 0x4(,%rdx,4),______

mov _______,0x4(,%rdx,4)

Copy the value at the address which is
(4 times the value in register %rdx, plus

0x4), into some destination.

Copy the value from some source into the
memory at the address which is (4 times

the value in register %rdx, plus 0x4).

13

Operand Forms: Scaled Indexed

mov (%rax,%rdx,2),________

mov _________,(%rax,%rdx,2)

Copy the value at the address which is (the
value in register %rax plus 2 times the value in

register %rdx) into some destination.

Copy the value from some source into the memory at
the address which is (the value in register %rax

plus 2 times the value in register %rdx).

14

Operand Forms: Scaled Indexed

mov 0x4(%rax,%rdx,2),_____

mov ______,0x4(%rax,%rdx,2)

Copy the value at the address which is (0x4 plus the
value in register %rax plus 2 times the value in

register %rdx) into some destination.

Copy the value from some source into the memory at
the address which is (0x4 plus the value in register

%rax plus 2 times the value in register %rdx).

15

Most General Operand Form

Imm(rb,ri,s)

is equivalent to…

Imm + R[rb] + R[ri]*s

16

Most General Operand Form

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement:
pos/neg constant
(if missing, = 0)

Index: register
(if missing, = 0)

Scale must be
1,2,4, or 8
(if missing, = 1)

Base: register (if
missing, = 0)

17

Operand Forms
Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟! R[𝑟!] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟!) M[R 𝑟!] Indirect

Memory 𝐼𝑚𝑚(𝑟") M[𝐼𝑚𝑚 + 	R 𝑟"] Base + displacement

Memory (𝑟" , 𝑟#) M[R 𝑟" + R 𝑟#] Indexed

Memory 𝐼𝑚𝑚(𝑟" , 𝑟#) M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟#] Indexed

Memory (, 𝑟# , 𝑠) M[R 𝑟# 	 / 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(, 𝑟# , 𝑠) M[𝐼𝑚𝑚 + R 𝑟# 	 / 𝑠] Scaled indexed

Memory (𝑟" , 𝑟# , 𝑠) M[R 𝑟" + R 𝑟# 	 / 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟" , 𝑟# , 𝑠) M[𝐼𝑚𝑚 + R 𝑟" + 	R 𝑟# 	 / 𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

18

Practice #3: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x1 is stored in register %rcx, the value
0x100 is stored in register %rax, the value 0x3 is stored in register %rdx, and
value 0x11 is stored at address 0x10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4),%rbx
Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement Base Index Scale
(1,2,4,8)

For #2, respond with your thoughts on
PollEv: pollev.com/cs107 or text CS107
to 22333 once to join.

19

Goals of indirect addressing: C

Why are there so many forms of
indirect addressing?

We see these indirect addressing
paradigms in C as well!

20

From Assembly to C
What might be the equivalent C-like operation?

1. mov $0x0,%rdx
2. mov %rdx,%rcx
3. mov $0x42,(%rdi)
4. mov (%rax,%rcx,8),%rax

🤔

21

From Assembly to C
What might be the equivalent C-like operation?

1. mov $0x0,%rdx -> maybe long x = 0
2. mov %rdx,%rcx -> maybe long x = y;
3. mov $0x42,(%rdi) -> maybe *ptr = 0x42;
4. mov (%rax,%rcx,8),%rax -> maybe long x = arr[i];

Indirect addressing
is like pointer
arithmetic/deref!

22

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

23

Data Sizes
Data sizes in assembly have slightly different terminology to get used to:
• A byte is 1 byte.
• A word is 2 bytes.
• A double word is 4 bytes.
• A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:
• b means byte
• w means word
• l means double word
• q means quad word

24

Register Sizes
63Bit: 071531

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rsi %esi %si %sil

%rdi %edi %di %dil

25

Register Sizes

%rbp %ebp %bp %bpl

63Bit: 071531

%rsp %esp %sp %spl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b

26

Register Sizes

%r12 %r12d %r12w %r12b

63Bit: 071531

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b

27

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

28

mov Variants
• mov can take an optional suffix (b,w,l,q) that specifies the size of data to move:
movb, movw, movl, movq

• mov only updates the specific register bytes or memory locations indicated.
• Exception: movl writing to a register will also set high order 4 bytes to 0.

29

Practice: mov And Data Sizes
Sometimes, you might see mov suffixes that specify the amount of data being
moved. Other times, they are omitted if we can deduce the size from the
arguments.

movl %eax,(%rsp)
movw (%rax),%dx
movb (%rsp,%rdx,4),%dl
mov $0x0,%eax

30

mov
• The movabsq instruction is used to write a 64-bit Immediate (constant) value.
• The regular movq instruction can only take 32-bit immediates.
• 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

31

movz and movs
• There are two mov instructions that can be used to copy a smaller source to a

larger destination: movz and movs.
• movz fills the remaining bytes with zeros
• movs fills the remaining bytes by sign-extending the most significant bit in the

source.
• The source must be from memory or a register, and the destination is a

register.

32

movz and movs

Instruction Description

movzbw Move zero-extended byte to word

movzbl Move zero-extended byte to double word

movzwl Move zero-extended word to double word

movzbq Move zero-extended byte to quad word

movzwq Move zero-extended word to quad word

MOVZ S,R R ← ZeroExtend(S)

33

movz and movs

Instruction Description

movsbw Move sign-extended byte to word

movsbl Move sign-extended byte to double word

movswl Move sign-extended word to double word

movsbq Move sign-extended byte to quad word

movswq Move sign-extended word to quad word

movslq Move sign-extended double word to quad word

cltq Sign-extend %eax to %rax
%rax <- SignExtend(%eax)

MOVS S,R R ← SignExtend(S)

34

Register Sizes
• The operand forms with parentheses (e.g. mov (%rax)) require that registers in

parentheses be the 64-bit registers.
• For that reason, you may see smaller registers extended with e.g. movs into

the larger registers before these kinds of instructions.

35

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

36

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

37

lea
The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

38

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

39

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

40

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

41

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

7(%rax, %rax, 8), %rdx Go to the address (7 + %rax + 8 * %rax)
and copy data there into %rdx.

Copy (7 + %rax + 8 * %rax) into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

42

Reverse Engineering Practice
void calculate(int x, int y, int *ptr) {
 ____?____;
}

calculate:
 leal (%rdi,%rsi,2), %eax
 movl %eax, (%rdx)
 ret

Note: assume x is in %rdi, y
is in %rsi and ptr is in %rdx.

43

Reverse Engineering Practice
void calculate(int x, int y, int *ptr) {
 *ptr = x + 2 * y;
}

calculate:
 leal (%rdi,%rsi,2), %eax
 movl %eax, (%rdx)
 ret

44

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

45

A Note About Operand Forms
• Many instructions share the same address operand forms that mov uses.

• Eg. 7(%rax, %rcx, 2).

• These forms work the same way for other instructions, except for lea:
• It interprets this form as just the calculation, not the dereferencing
• lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

46

Unary Instructions
The following instructions operate on a single operand (register or memory):

Examples:
 incq 16(%rax)
 dec %rdx
 not %rcx

Instruction Effect Description

inc D D ← D + 1 Increment

dec D D ← D - 1 Decrement

neg D D ← -D Negate

not D D ← ~D Complement

47

Binary Instructions
The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Examples:
 addq %rcx,(%rax)

 xorq $16,(%rax, %rdx, 8)
 subq %rdx,8(%rax)

Instruction Effect Description

add S, D D ← D + S Add

sub S, D D ← D - S Subtract

imul S, D D ← D * S Multiply

xor S, D D ← D ^ S Exclusive-or

or S, D D ← D | S Or

and S, D D ← D & S And

48

Shift Instructions
The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Examples:
 shll $3,(%rax)
 shrl %cl,(%rax,%rdx,8)
 sarl $4,8(%rax)

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

49

Shift Amount

When a shift instruction uses %cl, it looks at only the number of bits in %cl that
make sense for what is being shifted.
• E.g. when shifting 1 byte, it looks only at the lower 3 bits (storing at most 7)
• E.g. when shifting 2 bytes, it looks only at the lower 4 bits (storing at most 15)
• When shifting w bits, it looks at the low-order log2(w) bits of %cl for the shift

amount.
• Why is this useful? Can specify shift amount as all 1s, but it will shift by the

appropriate amount.

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

50

Recap
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations

Next Time: more arithmetic operations, and reverse engineering practice

Lecture 11 takeaway: There are
assembly instructions for arithmetic
and logical operations. They share
the same operand form as mov, but
lea interprets them differently.
There are also different register sizes
that may be used in assembly
instructions.

51

Extra Practice

52

Fill in the blank to complete the C code that 1. generates this assembly
 2. results in this register layout
long arr[5];
...
long num = ____???___;

mov (%rdi, %rcx, 8),%rax

1. Extra Practice

<val of num>

%rax

3
%rcx

<val of arr>

%rdi 🤔

53

Fill in the blank to complete the C code that 1. generates this assembly
 2. results in this register layout
long arr[5];
...
long num = ____???___;

mov (%rdi, %rcx, 8),%rax

1. Extra Practice

long num = arr[3];
long num = *(arr + 3);
long num = *(arr + y);

(assume long y = 3;
declared earlier)

<val of num>

%rax

3
%rcx

<val of arr>

%rdi

54

Fill in the blank to complete the C code that 1. generates this assembly
 2. has this register layout
char str[5];
...
___???___ = 'c';

mov $0x63,(%rcx,%rdx,1)

2. Extra Practice

<val of str>

%rcx

2
%rdx 🤔

55

Fill in the blank to complete the C code that 1. generates this assembly
 2. has this register layout
char str[5];
...
___???___ = 'c';

mov $0x63,(%rcx,%rdx,1)

2. Extra Practice

<val of str>

%rcx

2
%rdx

str[2] = 'c';
*(str + 2) = 'c';

