CS107, Lecture 18

Assembly: Control Flow

Reading: B&O 3.6

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

Warm-up: Reverse Engineering

int elem arithmetic(int nums[], int y) {

int z = nums|] * 5

// nums 1in %rdi, y 1in %esi
elem_arithmetic:
movl %esi, Z%eax
imull 4(%rdi), %eax
movslq %esi, %rsi
subl (%rdi,%rsi,4), %eax
lea 2(%rax, %rax), %eax
ret

Warm-up: Reverse Engineering

int elem_arithmetic(int nums[], int y) {
int z = nums[1] * y;

Work through the last two blanks

£ 77 ’ in groups and input your answer
return ; for the first blank on PollEv:
} pollev.com/cs107 or text CS107 to

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

22333 once to join.

movl %esi, %eax // copy y into Z%eax
imull 4(%rdi), %eax // multiply %eax by nums[1]
movslq %esi, %rsi // sign-extend %esi to %rsi

subl (%rdi,%rsi,4), %eax
lea 2(%rax, %rax), %eax
ret

Warm-up: Reverse Engineering

int elem_arithmetic(int nums[], int y) {
int z = nums[1] * y;

z -= nums[y];

return 2 * z + 2;

// nums 1in %rdi, y 1in %esi
elem_arithmetic:

movl %esi, %eax // copy y into %eax
imull 4(%rdi), %eax // multiply %eax by nums[1]
movslq %esi, %rsi // sign-extend %esi to %rsi

subl (%rdi,%rsi,4), %eax // subtract nums[y] from %eax
lea 2(%rax, %rax), %eax // multiply %rax by 2, and add 2
ret

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

This Lecture

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 5

Learning Goals

* Understand how assembly implements loops and control flow

e Learn about how assembly stores comparison and operation results in
condition codes

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e |f Statements

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e |f Statements

Executing Instructions

What does it mean for a program
to execute?

So far:
* Program values can be stored in memory or registers.

* Assembly instructions read/write values back and forth
between registers (on the CPU) and memory.

* Assembly instructions are also stored in memory.

Today:

e Who controls the instructions?
How do we know what to do now or next?

Answer:
* The program counter (PC), %rip.

40041d
4004fc

4004b
4004fa
40049
40048
40047
400416
40045
40044
40043
40042
40041

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c/

e5

89

48

55

10

Register Responsibilities

Some registers take on special responsibilities during program execution.

* %rip stores the address of the next instruction to execute

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

11

Instructions Are Just Bytes!

CPU

Register file

PC |ALU

— [System bus Memory bus

e

| A | I/Q Main | “hello, world\n”
' bridge memoryl . .. code

JU

Expansion slots for
other devices such

Bus interface

USB ' Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Display ¢ — ‘ L
Disk | stored on disk

. ”~

12

Viem

ory bus

l

Instructions Are Just Bytes!

Main Memory

Stack

Heap

e
Data

tructions —
instructions il
0x0

14

00000000004004ed <loop>:

4004ed:

400411 :
400418
4004fc:

55

c7 45 fc 00 00 00 00
83 45 fc 01
eb fa

push

mov1l
addl
jmp

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

4004fd

4004fc

4004fb |01
4004fa | fc
40049 45
400418 |83
40047 00
400416 00
400415 00
40044 00
40043 fc
400412 45
40041 c7
4004ed 55

Main Memory

-

Stack

Heap

Data

Text (code)

1

ul

000000000R4004ed <loop>:
) 4004ed: 55

4004f1: c7 45 fc 00 00 00 00
4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

4004fd

4004fc

4004fb |01
4004fa fc
push %rbp 4004f9 |45
40048 |83
movl $0x0,-0x4(%rbp) 40047 |00
addl $0x1, -0x4(%rbp) 4004f6 |00
jmp 400418 <loop+Oxb> 40045 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
4004f1 | c7
0x4004ed ——
4004ed |55

%rip

16

4004fd

4004fc

4004fb 01
00000000004004ed <loop>: deedfa | fc
4004ed: 55 push %rbp 400419 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
4004f8: 83 45 fc 91 addl $0x1, -0x4(%rbp) 4004f6 |00
4004fc: eb fa jmp 400418 <loop+0xb> 4004f5 | 00

4004f4 |00

4004f3 | fc
4004f2 |45
The program counter (PC), 100afl | o7
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | Ox4004ce T —————————pp
4004ed 55

%Pip 17

4004fd

4004fc

4004fb 01
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 | 45

40048 83

» 4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0xb> 4004f5 | 00

4004f4 |00
4004f3 | fc
4004f2 |45
The program counter (PC), 1000l | o7
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004F1
4004ed 55

%rip 18

4004fd
4004fc
4004fb 01
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 | 45
40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp) 4004f7 |00
» 4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004f5 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
The program counter (PC), 1000l | o7
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004f8
4004ed 55

%rip 19

4004fd

4004fc

4004fb 01
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4 (%rbp 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rby) 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopfoxb> [ioeafs |ee
4004f4 |00
4004f3 | fc
4004f2 |45

The program counter (PC), 1000l | o7
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004fc
4004ed 55

%rip 20

4004fd

4004fc

4004fb o1
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 400419 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4 (%rbp 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rby) 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopgfoxb> 4004f5 | 00

4004f4 |00

_ 4004f3 | fc

Special hardware sets the program counter rooata |as

to the next instruction: 100afl | o7
%rip += size of bytes of current instruction

Ox4004fc
4004ed 55

%rip 21

Going In Circles

How can we use this representation of execution to represent e.g. a loop?
* Key Idea: we can “interfere” with %rip and set it back to an earlier instruction!

22

4004fd

4004fc

4004fb 01
00000000004004ed <loop>: feeata | fc
4004ed: 55 push %rbp 4004f9 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4 (%rbp 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rby) 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopfoxb> [ioeafs |ee
4004f4 |00
4004f3 | fc
4004f2 |45

The jmp instruction is an 1004F1 | 7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004FfC
4004ed 55

%rip 23

4004fd
4004fc
4004fb 01
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 | 45
40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp) 4004f7 |00
» 4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004f5 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
The jmp instruction is an 1004F1 | 7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004FfC
4004ed 55

%rip 24

4004fd

4004fc

4004fb 01
00000000004004ed <loop>: feeata | fc
4004ed: 55 push %rbp 4004f9 | 45

40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4 (%rbp 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rby) 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopfoxb> [ioeafs |ee
4004f4 |00
4004f3 | fc
4004f2 |45

The jmp instruction is an 1004F1 | 7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004FfC
4004ed 55

%Pip 25

4004fd
4004fc
4004fb 01
00000000004004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 | 45
40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp) 4004f7 |00
» 4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004f5 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
The jmp instruction is an 1004F1 | 7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004FfC
4004ed 55

%rip 26

4004fd
4004fc
4004fb o1
000000000V4004ed <loop>: 4oodfa | fc
4004ed: 55 push %rbp 4004f9 | 45
40048 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
m) 4004f8: 83 45 fc o1 addl $0x1,-0x4(%rbp) 10046 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004F5 | 00
4004f4 00
400413 fc
400412 45
This assembly represents an 10041 | c7
infinite loop in C!
, Ox4004fc
while (true) {..} rooned e

%rip 27

The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
jmp 40418 <loop+0xb>

The destination can also be one of the usual operand forms (indirect jump):
jmp *%rax

28

“Interfering” with %rip

1. How do we repeat instructions in a loop?
jmp [target]
A 1l-step unconditional jump (always

jump when we execute this instruction)

What if we want a conditional jump?

29

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e |f Statements

30

* In C, we have control flow statements like if, else, while, for, etc. to write
programs that are more expressive than just one instruction following another.

* This is conditional execution of statements: executing statements if one
condition is true, executing other statements if one condition is false, etc.

* How is this represented in assembly?

31

o In Assembly:
1 -F (X > y) { 1. Calculate the condition result

/ / a 2. Based on theresult,gotoaorb

} else {
// b

* In assembly, it takes more than one instruction to do these two steps.

* Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:
1. cmp S1, S2 // compare two values
2. je [target] or jne [target] or jl[target] or ... // conditionally jump

/ A A

“jlump if “jump if “jlump if
equal” not equa less than”

|II

33

Conditional Jumps

There are also variants of jmp that jump only if certain conditions are true
(“Conditional Jump”). The jump location for these must be hardcoded into the
instruction.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)
jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)
jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=) 34

Read cmp $1,52 as “compare S2 to S17:

// Jump if %edi > 2 // Jump 1f %edli == 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump 1if %edi != 3 // Jump 1f %edi <=1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

Wait a minute — how does the jump instruction know anything about the
compared values in the earlier instruction?

35

* The CPU has special registers called condition codes that are like “global
variables”. They automatically keep track of information about the most
recent arithmetic or logical operation.

* cmp compares via calculation (subtraction) and info is stored in the condition codes
* conditional jump instructions look at these condition codes to know whether to jump

* What exactly are the condition codes? How do they store this information?

36

Condition Codes

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Most common condition codes:

* CF: Carry flag. The most recent operation generated a carry out of the most
significant bit. Used to detect overflow for unsigned operations.

e ZF: Zero flag. The most recent operation yielded zero.
* SF: Sign flag. The most recent operation yielded a negative value.

* OF: Overflow flag. The most recent operation caused a two’s-complement
overflow-either negative or positive.

37

Setting Condition Codes

The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 - S1

Instruction Description

cmpb Compare byte

cmpw Compare word

cmpl Compare double word
cmpq Compare quad word

38

Conditional Jumps

Conditional jumps can look at subsets of the condition codes in order to check
their condition of interest.

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (ZF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)
ja Label jnbe Above (unsigned >) (CF =0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF =1)

jbe Label jna Below or equal (unsigned <=) (CF =1 or ZF = 1) 39

Setting Condition Codes

The different conditional jumps look at appropriate combinations of condition
codes to know whether the condition it cares about is true.

* E.g. je (“jump equal”) really checks if the ZF (zero flag) is 1
* E.g. jns (“jump not signed”) really checks if the SF (sign flag) is 1
e E.g. jl (“jump less than”) really checks if SF (sign flag) != OF (overflow flag)

 SF =1 and OF = 0 means no signed overflow, and the result was negative

 SF =0 and OF =1 means signed overflow, and the result was positive, meaning it
overflowed from the negative direction.

40

Read cmp S1,S2 as “compare S2 to S1”. It calculates S2 — S1 and updates the
condition codes with the result.

// Jump if %edi > 2 // Jump 1f %edli == 4
// calculates %edi - 2 // calculates %edi - 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump 1if %edi != 3 // Jump 1f %edi <=1
// calculates %edi - 3 // calculates %edi - 1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

41

Setting Condition Codes

Usually when cmp is paired with conditional jumps, we can read them together.
But other instructions use the condition codes in different ways. Example:

The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1
testb Test byte
testw Test word
testl Test double word
testq Test quad word

Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

42

The test Instruction

« TEST S1, S2 isS2 & S1

test %edl, %»edi
jns

sedli & %edi 1s nonnegative
%edi 1s nonnegative

43

Condition Codes

* Previously-discussed arithmetic and logical instructions update these flags. lea
does not (it was intended only for address computations).

* Logical operations (xor, etc.) set carry and overflow flags to zero.

 Shift operations set the carry flag to the last bit shifted out and set the
overflow flag to zero.

* For more complicated reasons, inc and dec set the overflow and zero flags, but
leave the carry flag unchanged.

44

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
* Condition Codes
* Assembly Instructions

e |f Statements

45

Practice: Fill In The Blank

int if _then(int paraml) { ©000000000401126 <if_then>:

if (

) 1

}

return

401126:
401129:
40112b:
40112e:
40112f:
401132:

cmp $0x6, %edi

je 40112F
lea (%rdi,%rdi,1),%eax
retq

add $0x1, %edi
jmp 40112b

/_\\
)2
®)

6

46

Practice: Fill In The Blank

int if _then(int paraml) { ©000000000401126 <if_then>:

¥

if (paraml == 6) {
paraml++;
}

return paraml * 2;

401126:
401129:
40112b:
40112e:
40112f:
401132:

cmp $0x6, %edi

je 40112F
lea (%rdi,%rdi,1),%eax
retq

add $0x1, %edi
jmp 40112b

/_\\
)2
®)

6

47

Common If-Else Construction

If-Else In C

If-Else In Assembly pseudocode

long absdiff(long x, long y) { Check opposite of code condition

long result;

if (x < vy) {
result =y - X;
} else {

result = x - y;

}

return result;

Jump to else-body if test passes
If-body

Jump to past else-body

Else-body

Past else body

48

Practice: Fill in the Blank

If-Else In C 401134 <+0>: mov %rsi,srax
401137 <+3>: cmp %rsi,srdi
40113a <+6>: jge 0x401140 <absdiff+12>

long absdiff(long x, long y) {
long result;

: X < 40113c <+8>: sub %rdi,%rax
1t L) A 40113f <+11>: retq
result = y - X ; 401140 <+12>: sub %rsi,srdi

401143 <+15>: mov %rdi, %rax

1
yoelse d 401146 <+18>: retgq

result = x - y .
) If-Else In Assembly pseudocode
Check opposite of code condition
return result; Jump to else-body if test passes
} If-body
Jump to past else-body
Else-body
Past else body

49

If-Else Construction Variations

C Code
int test(int arg) {
int ret;
if (arg > 3) {
ret = 10;
} else {
ret = 0;
}
ret++;

return ret;

Assembly

401134
401137
401139
40113e
401141
401142
401147

<+0>:
<+3>:
<+5>:

<+10>:
<+13>:
<+14>:
<+19>:

cmp
jle
mov
add
retq
mov

Jmp

$0x3, %edi
0x401142 <test+14>

$0xa, %eax
$0x1, %eax

$0x0, %eax
0x40113e <test+10>

50

* Assembly Execution and %rip Lecture 18 takeaway: We

* Control Flow Mechanics represent control flow in assembly
« Condition Codes by storing information in condition
* Assembly Instructions codes and having instructions that

* If Statements act differently depending on the

condition code values.
Conditionals commonly use cmp
or test along with jumps to
conditionally skip over assembly
instructions.

51

