
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107 Lecture 2
Unix and C

While you’re waiting – get set up with PollEverywhere!
Visit pollev.stanford.edu to set up your account.

2

3

PollEverywhere
• Today we’re doing a “trial run” of using PollEverywhere for poll questions
• Not counted for attendance (that starts next lecture), just a chance to try it out
• Confirm responses went through in Canvas Gradebook after lecture
• Responses not anonymized, but we look only at aggregated results and totals
• Polls are for live in-person response in lecture
• Option 2 for lecture credit is to complete Canvas quiz (also starts with next lecture)

• Visit pollev.stanford.edu to log in (or use the PollEverywhere app) and sign in
with your @stanford.edu email – NOT your personal email!
• Compatible with any device with a web browser, mobile app also available, or

you can respond via text – however, to respond via text you must first log in
via a web browser and add your phone number to your profile.
• Poll questions in slides will automatically activate the poll and respond at

pollev.com/cs107.

https://pollev.stanford.edu/

4

Announcements
• Remember to input your lab preferences through 5PM Sat! Link is on the

course website (under “Labs”).
• Helper Hours scheduled and starting this week!
• assign0 released, due Mon 11:59PM PDT
• Please email Ola (Head TA) about OAE accommodations and midterm conflicts

as soon as you can

5

Learning Goals
• Learn how to navigate a computer and edit/run programs using the terminal
• Understand the differences between C and other languages and how to write C

programs

6

Lecture Plan
• Unix and the Command Line
• Getting Started With C

7

Lecture Plan
• Unix and the Command Line
• Getting Started With C

8

What is the Command Line?
• The command-line is a text-based interface (i.e., terminal interface) to

navigate a computer, instead of a Graphical User Interface (GUI).

Graphical User Interface Text-based interface

9

Unix Commands To Try
• cd – change directories (..)
• ls – list directory contents
• mkdir – make directory
• emacs – open text editor
• rm – remove file or folder
• man – view manual pages

See the course website for
more commands and a
complete reference.

10

Demo: Using Unix and the
Command Line

Get up and running with our guide:
http://cs107.stanford.edu/resources/getting-started.html

http://cs107.stanford.edu/resources/getting-started.html

11

Lecture Plan
• Unix and the Command Line
• Getting Started With C

12

The C Language
C was created around 1970 to make writing Unix and Unix tools easier.
• Part of the C/C++/Java family of languages (C++ and Java were created later)
• Design principles:
• Small, simple abstractions of hardware
• Minimalist aesthetic
• Prioritizes efficiency and minimalism over safety and high-level abstractions

• Procedural (you write functions, no classes or methods) – vs. C++ or Python
where you can write functions but also classes with methods
• Doesn’t have all features you may know from other languages (e.g., no pass by

reference, no classes and objects, no ADTs, no extensive libraries, weak
compiler and almost no runtime checks – which can cause security
vulnerabilities!)

13

Why C?
• Many tools (and even other languages, like Python!) are built with C.
• C is the language of choice for fast, highly efficient programs.
• C is popular for systems programming (operating systems, networking, etc.)
• C lets you work at a lower level to manipulate and understand the underlying

system.

14

Programming Language Popularity

https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

15

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

16

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Program comments
You can write block or inline comments.

17

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
} Import statements

C libraries are written with angle brackets.
Local libraries have quotes:
#include "lib.h"

18

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Main function – entry point for the program
Should always return an integer (0 = success)

19

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Main parameters – main takes two parameters,
both relating to the command line arguments
used to execute the program. (split by spaces)

argc is the number of arguments in argv
argv is an array of arguments (char * is C string)

If user runs ls -a:

argv = [“ls”, “-a”]
argc = 2

20

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

printf – prints output to the screen

21

Console Output: printf
printf(text, arg1, arg2, arg3,...);

printf makes it easy to print out the values of variables or expressions.
If you include placeholders in your printed text, printf will replace each
placeholder in order with the values of the parameters passed after the text. (C
does not support string concatenation with “+”).

%s (string) %d (integer) %f (double)

 // Example

char *classPrefix = "CS";
int classNumber = 107;
printf("You are in %s%d!", classPrefix, classNumber); // You are in CS107!

22

Familiar Syntax
int x = 42 + 7 * -5; // variables, types
double pi = 3.14159;
char c = 'Q'; /* two comment styles */

for (int i = 0; i < 10; i++) { // for loops
 if (i % 2 == 0) { // if statements
 x += i;
 }
}

while (x > 0 && c == 'Q' || b) { // while loops, logic
 x = x / 2;
 if (x == 42) {
 return 0;
 }
}

binky(x, 17, c); // function call

23

Boolean Variables
To declare Booleans, (e.g. bool b = ____), you must include stdbool.h:

#include <stdio.h> // for printf
#include <stdbool.h> // for bool

int main(int argc, char *argv[]) {
 bool x = 5 > 2 && binky(argc) > 0;
 if (x) {
 printf("Hello, world!\n");
 } else {
 printf("Howdy, world!\n");
 }
 return 0;
}

24

Boolean Expressions
C treats a nonzero value as true, and a zero value as false:

#include <stdio.h>

int main(int argc, char *argv[]) {
 int x = 5;
 if (x) { // true
 printf("Hello, world!\n");
 } else {
 printf("Howdy, world!\n");
 }
 return 0;
}

25

Writing, Debugging and Compiling
We will use:
• the emacs text editor to write our C programs
• the make tool to compile our C programs
• the gdb debugger to debug our programs
• the valgrind tools to debug memory errors and

measure program efficiency

Now

Next week

26

Working On C Programs
• ssh – remotely log in to Myth computers
• Emacs – text editor to write and edit C programs
• Use the mouse to position cursor, scroll, and highlight text
• Ctl-x Ctl-s to save, Ctl-x Ctl-c to quit

• make – compile program using provided Makefile
• ./myprogram – run executable program (optionally with arguments)
• make clean – remove executables and other compiler files
• Lecture code is accessible at /usr/class/cs107/lecture-code/lect[N]
• Make your own copy: cp -r /usr/class/cs107/lecture-code/lect[N] lect[N]
• See the website for even more commands, and a complete reference.

27

Demo: Compiling And
Running A C Program

Get up and running with our guide:
http://cs107.stanford.edu/resources/getting-started.html

http://cs107.stanford.edu/resources/getting-started.html

28

Assign0
Assignment 0 (Intro to Unix and C) is due on Mon. 4/8 at 11:59PM PDT.

There are 5 parts to the assignment, which is meant to get you comfortable
using the command line, and editing/compiling/running C programs:
• Visit the website resources to become familiar with different Unix commands
• Clone the assign0 starter project
• Answer several questions in readme.txt
• Compile a provided C program and modify it
• Submit the assignment

29

Preview: Next Time
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Many operating systems may have issues storing timestamp values beginning

on Jan 19, 2038
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to

remotely execute code

Next time: How can a computer represent integer numbers? What are the
limitations?

https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://computer.howstuffworks.com/question75.htm
https://nvd.nist.gov/vuln/detail/CVE-2019-3857

