CS107 Lecture 2
Unix and C

While you’re waiting – get set up with PollEverywhere!
Visit pollev.stanford.edu to set up your account.
How are you doing? (This is an open ended question, answer however you like!)

Nobody has responded yet.

Hang tight! Responses are coming in.
Today we’re doing a “trial run” of using Poll Everywhere for poll questions
• Not counted for attendance (that starts next lecture), just a chance to try it out
• Confirm responses went through in Canvas Gradebook after lecture
• Responses not anonymized, but we look only at aggregated results and totals
• Polls are for live in-person response in lecture
• Option 2 for lecture credit is to complete Canvas quiz (also starts with next lecture)

Visit poll.v.stanford.edu to log in (or use the Poll Everywhere app) and sign in with your @stanford.edu email – NOT your personal email!

Compatible with any device with a web browser, mobile app also available, or you can respond via text – however, to respond via text you must first log in via a web browser and add your phone number to your profile.

Poll questions in slides will automatically activate the poll and respond at pollev.com/cs107.
Announcements

• Remember to input your lab preferences through 5PM Sat! Link is on the course website (under “Labs”).
• Helper Hours scheduled and starting this week!
• assign0 released, due Mon 11:59PM PDT
• Please email Ola (Head TA) about OAE accommodations and midterm conflicts as soon as you can
Learning Goals

• Learn how to navigate a computer and edit/run programs using the terminal
• Understand the differences between C and other languages and how to write C programs
Lecture Plan

• Unix and the Command Line
• Getting Started With C
Lecture Plan

• Unix and the Command Line
• Getting Started With C
What is the Command Line?

- The **command-line** is a text-based interface (i.e., **terminal** interface) to navigate a computer, instead of a Graphical User Interface (GUI).
Unix Commands To Try

- `cd` – change directories (..)
- `ls` – list directory contents
- `mkdir` – make directory
- `emacs` – open text editor
- `rm` – remove file or folder
- `man` – view manual pages

See the course website for more commands and a complete reference.
Demo: Using Unix and the Command Line

Get up and running with our guide:
http://cs107.stanford.edu/resources/getting-started.html
Lecture Plan

• Unix and the Command Line
• Getting Started With C
The C Language

C was created around 1970 to make writing Unix and Unix tools easier.

• Part of the C/C++/Java family of languages (C++ and Java were created later)

• Design principles:
 • Small, simple abstractions of hardware
 • Minimalist aesthetic
 • Prioritizes efficiency and minimalism over safety and high-level abstractions

• Procedural (you write functions, no classes or methods) – vs. C++ or Python where you can write functions but also classes with methods

• Doesn’t have all features you may know from other languages (e.g., no pass by reference, no classes and objects, no ADTs, no extensive libraries, weak compiler and almost no runtime checks – which can cause security vulnerabilities!)
Why C?

• Many tools (and even other languages, like Python!) are built with C.
• C is the language of choice for fast, highly efficient programs.
• C is popular for systems programming (operating systems, networking, etc.)
• C lets you work at a lower level to manipulate and understand the underlying system.
Programming Language Popularity

TIOBE Programming Community Index

Source: www.tiobe.com

https://www.tiobe.com/tiobe-index/
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}
Our First C Program

/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}
Our First C Program

/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Import statements
C libraries are written with angle brackets.
Local libraries have quotes:
#include "lib.h"
Our First C Program

/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

If user runs ls -a:

argc = ["ls", "-a"]
argv = 2

Main parameters – main takes two parameters, both relating to the command line arguments used to execute the program. (split by spaces)

argc is the number of arguments in argv
argv is an array of arguments (char * is C string)
*/

* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

printf – prints output to the screen
printf makes it easy to print out the values of variables or expressions. If you include *placeholders* in your printed text, printf will replace each placeholder *in order* with the values of the parameters passed after the text. (C does not support string concatenation with “+”).

%s (string) %d (integer) %f (double)

// Example
char *classPrefix = "CS";
int classNumber = 107;
printf("You are in %s%d!", classPrefix, classNumber); // You are in CS107!
Familiar Syntax

```c
int x = 42 + 7 * -5; // variables, types
double pi = 3.14159;
char c = 'Q';

/* two comment styles */

for (int i = 0; i < 10; i++) {
    if (i % 2 == 0) {
        x += i;
    }
}

while (x > 0 && c == 'Q' || b) {
    x = x / 2;
    if (x == 42) {
        return 0;
    }
}

binky(x, 17, c); // function call
```
To declare Booleans, (e.g. bool b = ____), you must include stdbool.h:

```c
#include <stdio.h>    // for printf
#include <stdbool.h>  // for bool

int main(int argc, char **argv[]) {
    bool x = 5 > 2 && binky(argc) > 0;
    if (x) {
        printf("Hello, world!\n");
    } else {
        printf("Howdy, world!\n");
    }
    return 0;
}
```
Boolean Expressions

C treats a nonzero value as true, and a zero value as false:

```c
#include <stdio.h>

int main(int argc, char *argv[]) {
    int x = 5;
    if (x) {    // true
        printf("Hello, world!\n");
    } else {
        printf("Howdy, world!\n");
    }
    return 0;
}
```
Writing, Debugging and Compiling

We will use:

• the **emacs** text editor to write our C programs
• the **make** tool to compile our C programs
• the **gdb** debugger to debug our programs
• the **valgrind** tools to debug memory errors and measure program efficiency

Now

Next week
Working On C Programs

- **ssh** – remotely log in to Myth computers
- **Emacs** – text editor to write and edit C programs
 - Use the mouse to position cursor, scroll, and highlight text
 - Ctl-x Ctl-s to save, Ctl-x Ctl-c to quit
- **make** – compile program using provided Makefile
- **./myprogram** – run executable program (optionally with arguments)
- **make clean** – remove executables and other compiler files
- Lecture code is accessible at `/usr/class/cs107/lecture-code/lect[N]`
 - Make your own copy: `cp -r /usr/class/cs107/lecture-code/lect[N] lect[N]`
 - See the website for even more commands, and a complete reference.
Demo: Compiling And Running A C Program

Get up and running with our guide:
http://cs107.stanford.edu/resources/getting-started.html
Assignment 0 (Intro to Unix and C) is due on Mon. 4/8 at 11:59PM PDT.

There are 5 parts to the assignment, which is meant to get you comfortable using the command line, and editing/compiling/running C programs:

• Visit the website resources to become familiar with different Unix commands
• Clone the assign0 starter project
• Answer several questions in readme.txt
• Compile a provided C program and **modify** it
• Submit the assignment
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Many operating systems may have issues storing timestamp values beginning on Jan 19, 2038
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to remotely execute code

Next time: How can a computer represent integer numbers? What are the limitations?