
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 21
Reverse Engineering

2

Learning Assembly

Moving data
around

Arithmetic and
logical

operations
Control flow Function calls

Reverse
Engineering /

assign5

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

This
Lecture

3

Learning Goals
• Learn how to approach reverse engineering executables
• Understand the requirements and tasks for assign5

4

Lecture Plan
• GDB / Function Call Practice: Recursion
• Reverse Engineering Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect21 .

5

Lecture Plan
• GDB / Function Call Practice: Recursion
• Reverse Engineering Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect21 .

6

Example: Recursion
• Let’s look at an example of recursion at the assembly level.
• We’ll use everything we’ve learned about registers, the stack, function calls,

parameters, and assembly instructions!
• We’ll also see how helpful GDB can be when tracing through assembly.

factorial.c and factorial

7

gdb tips

layout split
info reg

p $eax
p $eflags

b *0x400546
b *0x400550 if $eax > 98

ni
si

⭐⭐⭐

View C, assembly, and gdb (lab5)
Print all registers

Print register value
Print all condition codes currently set

Set breakpoint at assembly instruction
Set conditional breakpoint

Next assembly instruction
Step into assembly instruction (will step
into function calls)

(ctrl-x a: exit,
ctrl-l: resize,
refresh: refresh,
layout reg/asm,
focus next)

8

gdb tips
p/x $rdi
p/t $rsi

x $rdi
x/4bx $rdi
x/4wx $rdi

x/1gx $rdi

finish

⭐⭐⭐
Print register value in hex
Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 words (4 bytes) starting at
this address
Examine 1 giant word (8 bytes) starting
at this address

Finish function, return to caller

9

Lecture Plan
• GDB / Function Call Practice: Recursion
• Reverse Engineering Practice: Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect21 .

10

assign5
You are a security researcher hired to explore potential vulnerabilities and issues
at Stanford Bank. 3 core parts:

1. Uncovering ATM software vulnerabilities
2. Demonstrating how a data leak can lead to data aggregation and

uncovering of personal information
3. Reverse engineering a secure program – discover 4 passwords needed to

gain access to the system

11

Minivault
The minivault program is practice for part 3, SecureVault (it doesn't share code
with SecureVault but is similar reverse-engineering practice).
You must provide correct passwords for 2 stages:
 ./minivault [stage1password] [stage2password]

stage1 and stage2 are 2 functions in minivault, each passed in the password
for that stage. Our goal is to get both to return 1, and not 0.

12

Reverse Engineering Tips
1. Run the program live in GDB and step through. Reading and diagramming

by hand is useful, but quickly becomes infeasible with larger programs.
2. Break the assembly into chunks
3. Use gdb to verify your hypotheses.
4. Document your knowns and unknowns. Document and re-verify conflicting

assumptions.
5. Use compiler explorer to see what code looks like in assembly.
6. Use library functions to your advantage. If you spot a call to what looks like

a library function, it's the real deal.
7. When tracing an unknown function, before dissecting its behavior first

learn about the input/output of the function and what role it plays.

13

Demo: Minivault

Respond on PollEv: pollev.com/cs107
 or text CS107 to 22333 once to join.

14

Recap
• GDB / FuncQon Call PracQce:

Recursion
• Reverse Engineering PracQce:

Minivault

cp -r /afs/ir/class/cs107/lecture-code/lect21 .

Lecture 21 takeaway: Reverse
engineering lets us understand the
behavior of a program without seeing
its source code. Check out slide 12
for some summarized tips!

