
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 23
Managing The Heap, Continued

Reading: B&O 9.9, 9.11

2

CS107 Topic 6
How do the core malloc/realloc/free memory-allocation operations work?

Why is answering this question important?
• Combines techniques from across the quarter (bits/bytes, pointers, memory,

generics, assembly, efficiency, testing, and more) to understand a real-world
system that you have relied on all quarter!

• Learning about the design and tradeoffs in a real-world large system gives us a
great example of how to evaluate different designs when there’s no one
“right” answer.

assign6: implement two different possible designs for a heap allocator, implementing
malloc/realloc/free.

3

Learning Goals
• Learn about different ways to implement a heap allocator
• Understand the tradeoffs between bump, implicit and explicit free list

allocators

4

Lecture Plan
• Recap: heap allocators so far
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

5

Lecture Plan
• Recap: heap allocators so far
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

6

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 1: Hi! May I
please have 2 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE

7

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

8

Utilization
Question: Can we / should we shift these blocks down to make more space?
• No - we have already guaranteed these addresses to the client. We cannot

move allocated memory around, since this will mean the client will now have
incorrect pointers to their memory!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free

9

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

These are seemingly conflicting goals – for instance, it may take longer to better
plan out heap memory use for each request. Heap allocators must find an
appropriate balance between these two goals!

10

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

Other desirable goals:
Locality (“similar” blocks allocated close in space)

Robust (handle client errors)
Ease of implementation/maintenance

11

Lecture Plan
• Recap: heap allocators so far
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

12

Bump Allocator
Let’s say we want to entirely prioritize throughput, and do not care about
utilization at all. This means we do not care about reusing memory. How could
we do this?

A bump allocator is a heap allocator design that simply allocates the next
available memory address upon an allocate request and does nothing on a free
request.

13

Bump Allocator Performance

1. Utilization

😱

Never reuses memory

2. Throughput

⭐

Ultra fast, short roubnes

14

Bump Allocator
• A bump allocator is a heap allocator design that simply allocates the next

available memory address upon an allocate request and does nothing on a free
request.

• Throughput: each malloc and free execute only a handful of instructions:
• It is easy to find the next location to use
• Free does nothing!

• Utilization: we use each memory block at most once. No freeing at all, so no
memory is ever reused. L

• We provide a bump allocator implementation as part of the final assignment
as a code reading exercise.

15

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

AVAILABLE

17

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a AVAILABLE

Variable Value

a 0x10

18

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding AVAILABLE

19

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

20

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

21

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

d NULL

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

22

Summary: Bump Allocator
• A bump allocator is an extreme heap allocator – it optimizes only for

throughput, not utilization.
• Better allocators strike a more reasonable balance. How can we do this?

Questions to consider:
1. How do we keep track of free blocks?
2. How do we choose an appropriate free block in which to place a newly

allocated block?
3. After we place a newly allocated block in some free block, what do we do

with the remainder of the free block?
4. What do we do with a block that has just been freed?

23

Lecture Plan
• Recap: heap allocators so far
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

24

Implicit Free List Allocator
• Key idea: in order to reuse blocks, we need a way to track which blocks are

allocated and which are free.
• We could store this information in a separate global data structure, but this is

inefficient.
• Instead: let’s allocate extra space at the start of each block for a header storing

its payload size and whether it is allocated or free. (Payload=client data space)
• When we allocate a block, we look through the blocks to find a free one, and

we update its header to reflect its allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free.
• The header should be 8 bytes (or larger). Overhead!
• By storing the block size of each block, we implicitly have a list of free blocks.

25

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

26

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

“Header”

27

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

“Payload”

28

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

Block = header + payload

29

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

30

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

56
Free

Variable Value

a 0x18

31

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used b 40

Free

Variable Value

a 0x18

b 0x28

32

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used b 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

33

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Free b 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

34

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used d 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

35

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

36

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e

37

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e

38

Representing Headers
How can we store both a size and a status (Free/Allocated) in 8 bytes?
Int for size, int for status?

Key idea: block sizes will always be multiples of 8. (Why?)
• Least-significant 3 bits will be unused!
• Solution: use one of the 3 least-significant bits to store free/allocated status

no! malloc/realloc use size_t for sizes!

Header (8B)

Block size 00X

alloc/free

0363

39

Implicit Free List Allocator
• How can we choose a free block to use for an allocation request?

• First fit: search the list from beginning each time and choose first free block that fits.
• Next fit: instead of starting at the beginning, continue where previous search left off.
• Best fit: examine every free block and choose the one with the smallest size that fits.

• First fit/next fit easier to implement
• What are the pros/cons of each approach?

40

Implicit Free List Summary
For all blocks,
• Have a header that

stores size and status.
• Our list links all blocks,

allocated (A) and free (F).

Keeping track of free blocks:
• Improves memory utilization (vs bump allocator)
• Decreases throughput (worst case allocation request has O(A + F) time)
• Increases design complexity J

Header (8B)

Block size 00X

alloc/free

0363

41

Implicit free list header design
Should we store the block size as
(A) payload size, or
(B) header + payload size?

 Your decision affects how you
traverse the list (be careful of off-by-one)
Up to you!

Up to you!

42

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

Up to you!

43

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

16
Used e ???

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

Up to you!

44

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e + pad

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding? Internal fragmentation –
unused bytes because of padding

Up to you!

45

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

16
Used e 0

Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding?
B. Make a “zero-byte free block”? External fragmentation – unused free
blocks

Up to you!

46

Revisiting Our Goals
Questions we considered:
1. How do we keep track of free blocks? Using headers!
2. How do we choose an appropriate free block in which to place a newly

allocated block? Iterate through all blocks.
3. After we place a newly allocated block in some free block, what do we do

with the remainder of the free block? Try to make the most of it!
4. What do we do with a block that has just been freed? Update its header!

47

Practice 1: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *b = malloc(8);

🤔

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

32
Free

8
Used A

48

Practice 1: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *b = malloc(8);

🤔

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

32
Free

8
Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used B 32

Free
8

Used A

49

Practice 2: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *a = malloc(8);

🤔

0x10 0x18 0x20 0x28 0x30 0x38 0x40

24
Free

16
Free

Respond on PollEv: pollev.com/cs107
 or text CS107 to 22333 once to join.

50

51

Practice 2: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *a = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40

24
Free

16
Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40

8
Used A 8

Free
16

Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40

8
Used A 16

Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40

24
Used

A 16
Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40

24
Free

16
Used A

❌

 Space not tracked correctly

❌

 We can save extra for later

❌

 First fit chooses first available

52

Practice 3: Implicit (best-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

void *b = malloc(8);

🤔

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Free

8
Used A

53

Practice 3: Implicit (best-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

void *b = malloc(8);

🤔

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Free

8
Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Used B 8

Used A

54

Final Assignment: Implicit Allocator
• Must have headers that track block information (size, status in-use or free) –

you must use the 8 byte header size, storing the status using the free bits (this
is larger than the 4 byte headers specified in the book, as this makes it easier
to satisfy the alignment constraint and store information).

• Must have free blocks that are recycled and reused for subsequent malloc
requests if possible

• Must have a malloc implementation that searches the heap for free blocks via
an implicit list (i.e. traverses block-by-block).

• Does not need to have coalescing of free blocks
• Does not need to support in-place realloc
(Note: these could be part of an implicit allocator, it’s just not a requirement for this assignment)

55

Coalescing
void *e = malloc(24); // returns NULL!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

8
Free

8
Free

24
Used

You do not need to worry about this
problem for the implicit allocator, but this
is a requirement for the explicit allocator!
(More about this later).

56

In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

57

In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

56
Free

Variable Value

a 0x18

58

In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used b 40

Free

Variable Value

a 0x10

b 0x28

The implicit allocator can always move memory to a new
location for a realloc request. The explicit allocator must
support in-place realloc (more on this later).

59

Summary: Implicit Allocator
An implicit allocator is a more efficient implementation that has reasonable
throughput and utilization due to its recycling of blocks.

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

60

Checkpoint Review
Heap allocator terminology: What do the below terms mean/imply?
• Payload, Header, Free/Used(Allocated) status
• Splitting policy
• Memory utilization vs Throughput
• Bump allocator, Implicit free list Allocator
• First-fit approach, Best-fit approach
• Coalescing
• Realloc in place
• Fragmentation

61

Lecture Plan
• Recap: heap allocators so far
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

62

Lecture Plan
• Recap: heap allocators so far
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

• Explicit Allocator
• Coalescing
• In-place realloc

63

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free

8
Used

56
Free

64

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8

Used 0x10 0x50 8
Free 0x10 null

65

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8

Used 0x10 0x50 8
Free 0x10 null

This is inefficient – it triples the size of every header,
when we just need to jump from one free block to
another. And even if we just made free headers bigger,
it’s complicated to have two different header sizes.

66

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?

67

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure? More difficult to access in a separate place

– prefer storing near blocks on the heap itself.

68

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free

24
Used

32
Free

69

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null

0x10
First free block

70

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!
• This means each payload must be big enough to store 2 pointers (16 bytes). So

we must require that for every block, free and allocated. (why?)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null

71

Explicit Free List Allocator
• This design builds on the implicit allocator, but also stores pointers to the next

and previous free block inside each free block’s payload.
• When we allocate a block, we look through just the free blocks using our linked

list to find a free one, and we update its header and the linked list to reflect its
allocated size and that it is now allocated.

• When we free a block, we update its header to reflect it is now free and
update the linked list.

This explicit list of free blocks increases
request throughput, with some costs
(design and internal fragmentation)

72

Recap
• Recap: heap allocators so far
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

Next time: more about explicit allocators, and optimization

Lecture 23 takeaway: Bump, implicit
free list and explicit free list are 3 heap
allocator designs, each with their own
tradeoffs. The implicit free list and
explicit free list designs use headers
to keep track of blocks. The explicit
free list allocator adds an embedded
doubly-linked list between free blocks,
stored in the free block payloads.

