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CS107 Lecture 5
Bitwise Operators, Continued

reading:
Bryant & O’Hallaron, Ch. 2.1
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CS107 Topic 1
How can a computer represent integer numbers?

Why is answering this question important?
• Helps us understand the limitations of computer arithmetic (last week)
• Shows us how to more efficiently perform arithmetic (today)
• Shows us how we can encode data more compactly and efficiently (last time)

assign1: implement 3 programs that manipulate binary representations to (1) work 
around the limitations of arithmetic with addition, (2) simulate a chamber of gas 
particles, and (3) print Unicode text to the terminal.
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Learning Goals
• Learn about the bit shift operators
• Understand when to use one bitwise operator vs. another in your program
• Get practice with writing programs that manipulate binary representations
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Lecture Plan
• Recap: Bit Operators so far 
• Bit Shift Operators 
• Example: Powers of 2 
• Demo: GDB

cp -r /afs/ir/class/cs107/lecture-code/lect5 .
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Lecture Plan
• Recap: Bit Operators so far 
• Bit Shift Operators 
• Example: Powers of 2 
• Demo: GDB

cp -r /afs/ir/class/cs107/lecture-code/lect5 .
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Bits and Bytes So Far
// 1. Data is really stored in binary
int x = 5;   // really 0b00…0101 in memory!

// 2. We know what that binary representation is for integers
int y = -5;  // two’s complement: 0b111...11011

// 3. We can use/manipulate a binary representation with bit ops
x |= 0x2;  // turn on the 2nd bit from the right: 0b00…0111

// 4. A variable and its binary representation are
// one and the same
printf("%d\n", x); // prints 7!
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Bitwise OR (|)
| with 1 is useful for turning select bits on.
int x = 5; // 0b101

// Turn on the 2nd bit from the right
x |= 0x2; // 0b111

| is useful for taking the union of bits.
int x = 5;     // 0b00101
int y = 26;    // 0b11010
int z = x | y; // 0b11111
printf("%d\n", z); // 31
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Bitwise AND (&)
& with 0 is useful for turning select bits off.
int x = 5; // 0b101

// Turn off the 3rd bit from the right
x &= -5; // -5 is 0b111...1011

& is useful for taking the intersection of bits.
int x = 21;    // 0b10101
int y = 27;    // 0b11011
int z = x & y; // 0b10001
printf("%d\n", z); // 17
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Bitwise XOR (^)
^ with 1 is useful for flipping select bits.

int x = 5; // 0b101

// Flip the 2nd bit from the right
x ^= 0x2; // 0b111
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Bitwise NOT (~)
~ is useful for flipping all bits.

int x = 5; // 0b101

// Flip all bits
x = ~x;  // 0b11111...1010, which is -6

// Take two’s complement (same as negating)
int y = ~x + 1; // same as -x
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Bit Vectors and Sets
Instead of using arrays of e.g., Booleans in our programs, sometimes it’s 
beneficial to store that information in bits instead – more compact.
• Example: we can represent current courses taken using a char and 

manipulate its contents using bit operators.
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Bit Vectors and Sets
#define CS106A 0x1    /* 0000 0001 */
#define CS106B 0x2    /* 0000 0010 */
#define CS107E 0x4    /* 0000 0100 */
#define CS107  0x8    /* 0000 1000 */
#define CS111  0x10   /* 0001 0000 */
#define CS103  0x20   /* 0010 0000 */
#define CS109  0x40   /* 0100 0000 */
#define CS161  0x80   /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107
if (myClasses & CS106B) {...
 // taken CS106B!
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Practice: Bit Masking
Practice: write an expression that, given a 32-bit integer j, flips (“complements”) 
the least-significant byte, and preserves all other bytes. 
1. What operator is good for flipping certain bits?
2. What mask do we want?
3. How do we create that mask?

 j ^ 0xff
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Lecture Plan
• Recap: Bit Operators so far 
• Bit Shift Operators 
• Example: Powers of 2 
• Demo: GDB

cp -r /afs/ir/class/cs107/lecture-code/lect5 .
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Left Shift (<<)
The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the 
left.  New lower order bits are filled in with 0s, and bits shifted off the end are 
lost.

 x << k; // evaluates to x shifted to the left by k bits
 x <<= k; // shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off the end are lost.
    x >> k; // evaluates to x shifted to the right by k bits
    x >>= k; // shifts x to the right by k bits

Question: how does it fill in the new higher-order bits?



17

Right Shift (>>)
There are two kinds of right shifts, depending on the value and type you are 
shifting:

• Unsigned numbers are right-shifted by filling new high-order bits with 0s 
(“logical right shift”).
• Signed numbers are right-shifted by filling new high-order bits with the most 

significant bit (“arithmetic right shift”).

This way, the sign of the number (if applicable) is preserved!
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off the end are lost.
 x >> k; // evaluates to x shifted to the right by k bit
     x >>= k; // shifts x to the right by k bits

unsigned short x = 2; // 0000 0000 0000 0010
x >>= 1;           // 0000 0000 0000 0001
printf("%u\n", x); // 1
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off the end are lost.
 x >> k; // evaluates to x shifted to the right by k bit
     x >>= k; // shifts x to the right by k bits

short x = 2; // 0000 0000 0000 0010
x >>= 1;  // 0000 0000 0000 0001
printf("%d\n", x); // 1
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off the end are lost.
 x >> k; // evaluates to x shifted to the right by k bit
     x >>= k; // shifts x to the right by k bits

short x = -2; // 1111 1111 1111 1110
x >>= 1;  // 1111 1111 1111 1111
printf("%d\n", x); // -1
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Shifting and Masking
Suppose we have a 32-bit number.
How can we use bit operators to design a mask that turns on the i-th bit of a 
number for any i (0, 1, 2, …, 31)?
1. What operator is good for turning on certain bits?
2. What mask do we want?
3. How do we create that mask?

int x = 0b1010010;

🤔
Respond on PollEv for #3: pollev.com/cs107 
or text CS107 to 22333 once to join.
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Shifting and Masking
Suppose we have a 32-bit number.
How can we use bit operators to design a mask that turns on the i-th bit of a 
number for any i (0, 1, 2, …, 31)?
1. What operator is good for turning on certain bits?
2. What mask do we want?
3. How do we create that mask?

x | (1 << i)

int x = 0b1010010;
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Shifting and Masking
Suppose we have a 32-bit number.
How can we use bit operators to design a mask that turns on the i-th bit of a 
number for any i (0, 1, 2, …, 31)?
x | (1 << i)

What if x is a 64-bit number (e.g. long) and i could be 0-63?  It turns out there’s 
a problem with this expression…

int x = 0b1010010;
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Bit Operator Pitfalls
• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work!  1 is by default an int, and you can’t shift an int by 32 
because it only has 32 bits.  You must specify that you want 1 to be a long.

long num = 1L << 32;
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Shifting and Masking
Suppose we have a 64-bit number.
How can we use bit operators to design a mask that turns on the i-th bit of a 
number for any i (0, 1, 2, …, 63)?
x | (1L << i)

long x = 0b1010010;



27

Number Literal Suffixes
U makes a literal unsigned, and L makes a literal a long.

int w = -5 >> 1;  // 0b1111...1101, -5
int x = -5U >> 1; // 0b0111...1101, 2147483645

int y = 1 << 32;  // 0! (technically undefined)
int z = 1L << 32; // 4294967296
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1L << i
What does 1L << i represent numerically?

A power of 2!  Specifically, 2i.
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Lecture Plan
• Recap: Bit Operators so far 
• Bit Shift Operators 
• Example: Powers of 2 
• Demo: GDB

cp -r /afs/ir/class/cs107/lecture-code/lect5 .
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Powers of 2

Challenge: without using loops or math library 
functions, how could we detect whether a 
number is a power of 2?

What is true about a power of 2 but not other numbers? 🤔
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Powers of 2
Key idea: A power of 2 minus 1 will have all bits below the original bit be 1, and 
everything else be 0.  E.g.

0b10000 – 1 = 0b01111
0b100 – 1 = 0b011

Not true for other non-power-of-2 numbers:
0b10010 – 1 = 0b10001

Cool idea: no bits overlap between a power of 2 and a power of 2 minus 1.  How 
is this handy?
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Demo: Powers of 2

is_power_of_2.c
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Lecture Plan
• Recap: Bit Operators so far 
• Bit Shift Operators 
• Example: Powers of 2 
• Demo: GDB

cp -r /afs/ir/class/cs107/lecture-code/lect5 .
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Introducing GDB

Is there a way to step through the 
execution of a program and print out its 

values as it’s running?  E.g., to view 
binary representations?  Yes!
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The GDB Debugger
GDB is a command-line debugger, a text-based debugger with similar 
functionality to other debuggers you may have used, such as in Qt Creator
• It lets you put breakpoints at specific places in your program to pause there
• It lets you step through execution line by line
• It lets you print out values of variables in various ways (including binary)
• It lets you track down where your program crashed
• And much, much more!

GDB is essential to your success in CS107 this quarter!  We’ll be building our 
familiarity with GDB over the course of the quarter.
GDB Guide: cs107.stanford.edu/resources/gdb.html 

http://cs107.stanford.edu/resources/gdb.html
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gdb on a program
• gdb myprogram run gdb on executable
• b Set breakpoint on a function (e.g., b main)

 or line (b 42)
• r 82 Run with provided args
• n, s, continue control forward execution (next, step into, continue)
• p print variable (p varname) or evaluated expression (p 3L << 10)

• p/t, p/x                  binary and hex formats.
• p/d, p/u, p/c

• info args, locals

Important: gdb does not run the current line until you hit “next”
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Demo: Bitmasks and GDB

bits_playground.c
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gdb: highly recommended
At this point, setting breakpoints/stepping in gdb may seem like overkill for what 
could otherwise be achieved by copious printf statements.
However, gdb is incredibly useful for assign1 (and all assignments):
• A fast “C interpreter”: p + <expression>

• Sandbox/try out ideas around bitshift operators, signed/unsigned types, etc.
• Can print values out in binary!
• Once you’re happy, then make changes to your C file

• Tip: Open two terminal windows and SSH into myth in both
• Keep one for emacs, the other for gdb/command-line
• Easily reference C file line numbers and variables while accessing gdb

• Tip: Every time you update your C file, make and then rerun gdb.
Gdb takes practice! But the payoff is tremendous! J 
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Recap
• Recap: Bit Operators so far 
• Bit Operators + GDB Demo: Courses 
• Demo 2: Practice and Powers of 2 
• Bit Shift Operators 

Next time: How can a computer represent and manipulate more complex data 
like text?

Lecture 5 takeaways: We can 
use bit operators like &, |, ~, <<, 
etc. to manipulate the binary 
representation of values.  A 
number is a bit pattern that can 
be manipulated arithmetically or 
bitwise at your convenience!
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Extra Practice
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Shift Operation Pitfalls
1. Technically, the C standard does not precisely define whether a right shift for 

signed integers is logical or arithmetic.  However, almost all 
compilers/machines use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky!  For example:

 1<<2 + 3<<4  means 1 << (2+3) << 4 because addition and 
subtraction have higher precedence than shifts!  Always use parentheses 
to be sure:

 
 (1<<2) + (3<<4)
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Color Wheel
• Another application for storing data efficiently in binary is representing colors.
• A color representation commonly consists of opacity (how transparent or 

opaque it is), and how much red/green/blue is in the color.
• Key idea: we can encode each of these in 1 byte, in a value from 0-255!  Thus, 

an entire color can be represented in one 4-byte integer.

0x 42 53 01 44
Opacity Red Green Blue



43

Demo: Color Wheel

color_wheel.c
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Bit Masking
Bit masking is also useful for integer representations as well.  For instance, we 
might want to check the value of the most-significant bit, or just one of the 
middle bytes.

• Example: If I have a 32-bit integer j, what operation should I perform if I want 
to get just the lowest byte in j?

 int j = ...;
 int k = j & 0xff;  // mask to get just lowest byte 
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Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.

• Practice 2: write an expression that, given a 32-bit integer j, flips 
(“complements”) all but the least-significant byte, and preserves all other 
bytes.
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Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.
 j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips 
(“complements”) all but the least-significant byte, and preserves all other 
bytes.

 j ^ ~0xff
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More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the 

rest of the bits the same)?

long x = 0b1010010;

🤔
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More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the 

rest of the bits the same)?

x & (-1L << i)

long x = 0b1010010;

🤔


