
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 7
C Strings, Buffer Overflows and Security

Reading: K&R (1.6, 5.5, Appendix B3) or Essential
C section 3

2

CS107 Topic 2
How can a computer represent and manipulate more complex data like text?

Why is answering this question important?
• Shows us how strings are represented in C and other languages (last time)
• Helps us better understand buffer overflows, a common bug (this time)
• Introduces us to pointers, because strings can be pointers (next time)

assign2: implement 2 functions a 1 program using those functions to find the location
of different built-in commands in the filesystem. You’ll write functions to extract a list
of possible locations and tokenize that list of locations.

3

Learning Goals
• Understand how to use the built-in string functions for common string tasks
• Learn more about the risks of buffer overflows and how to mitigate them

4

Lecture Plan
• Recap: Strings so far
• Searching in Strings
• Practice: Password Verification
• Buffer Overflows and Security

cp -r /afs/ir/class/cs107/lecture-code/lect7 .

5

Lecture Plan
• Recap: Strings so far
• Searching in Strings
• Practice: Password Verification
• Buffer Overflows and Security

cp -r /afs/ir/class/cs107/lecture-code/lect7 .

6

C Strings
C strings are arrays of characters ending with a null-terminating character '\0'.

String operations such as strlen use the null-terminating character to find the
end of the string.

Side note: use strlen to get the length of a string. Don’t use sizeof!

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

7

Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

8

Substrings
We can combine pointer arithmetic and copying to make any substrings we’d
like.

// Want just "ace"
char str1[8];
strcpy(str1, "racecar");

char str2[4];
strncpy(str2, str1 + 1, 3);
str2[3] = '\0';
printf("%s\n", str1); // racecar
printf("%s\n", str2); // ace

9

char * vs. char[]
• char * is an 8-byte pointer – it stores an address of a character
• char[] is an array of characters – it stores the actual characters in a string
• When you pass a char[] as a parameter, it is automatically passed as a char *

(pointer to its first character)

10

char * vs. char[]
char myString[]

vs
char *myString

You can create char * pointers to point to any character in an existing string and
reassign them since they are just pointer variables. You cannot reassign an
array.

char myString[6];
strcpy(myString, "Hello");
myString = "Another string"; // not allowed!

char *myOtherString = myString;
myOtherString = somethingElse; // ok

11

Lecture Plan
• Recap: Strings so far
• Searching in Strings
• Practice: Password Verification
• Buffer Overflows and Security

cp -r /afs/ir/class/cs107/lecture-code/lect7 .

12

Searching For Letters
strchr returns a pointer to the first occurrence of a character in a string, or
NULL if the character is not in the string.

char bailey[7];
strcpy(bailey, "Bailey");
char *letterI = strchr(bailey, 'i');
printf("%s\n", bailey); // Bailey
printf("%s\n", letterI); // iley

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the last occurrence.

13

Searching For Strings
strstr returns a pointer to the first occurrence of the second string in the first,
or NULL if it cannot be found.

char bailey[11];
strcpy(bailey, "Bailey Dog");
char *substr = strstr(bailey, "Dog");
printf("%s\n", bailey); // Bailey Dog
printf("%s\n", substr); // Dog

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.

14

String Spans
strspn returns the length of the initial part of the first string which contains
only characters in the second string.

char bailey[10];
strcpy(bailey, "Bailey Dog");
int spanLength = strspn(bailey, "aBeoi"); // 3

“How many places can we go in the first string before I
encounter a character not in the second string?”

15

String Spans
strcspn (c = “complement”) returns the length of the initial part of the first
string which contains only characters not in the second string.

char bailey[10];
strcpy(bailey, "Bailey Dog");
int spanLength = strcspn(bailey, "driso"); // 2

“How many places can we go in the first string before I
encounter a character in the second string?”

16

str[c]spn vs. strstr
strspn/strcspn can’t search for substrings because it does not pay attention to
the order of the characters in the second string. strstr allows us to search for
substrings within another string.

// these are all equivalent
int spanLength = strcspn(bailey, "driso");
int spanLength = strcspn(bailey, "sirdo");
int spanLength = strcspn(bailey, "odris");

17

C Strings As Parameters
When we pass a string as a parameter, it is passed as a char *. We can still
operate on the string the same way as with a char[].

int doSomething(char *str) {
 char secondChar = str[1];
 ...
}

// can also write this, but it is really a pointer
int doSomething(char str[]) { ...

18

Arrays of Strings
We can make an array of strings to group multiple strings together:

char *stringArray[5]; // space to store 5 char *s

We can also use the following shorthand to initialize a string array:

char *stringArray[] = {
 "Hello",
 "Hi",
 "Hey there"
};

19

Arrays of Strings
We can access each string using bracket syntax:

printf("%s\n", stringArray[0]); // print out first string

When an array is passed as a parameter in C, C passes a pointer to the first
element of the array. This is what argv is in main! This means we write the
parameter type as:

void myFunction(char **stringArray) {

// equivalent to this, but it is really a double pointer
void myFunction(char *stringArray[]) {

20

Practice: Password Verification
Write a function verifyPassword that accepts a candidate password and
certain password criteria and returns whether the password is valid.

bool verifyPassword(char *password, char *validChars, char
*badSubstrings[], int numBadSubstrings);

password is valid if it contains only letters in validChars, and does not contain
any substrings in badSubstrings.

21

Practice: Password Verification
bool verifyPassword(char *password, char *validChars, char
*badSubstrings[], int numBadSubstrings);

Example:

char *invalidSubstrings[] = { "1234" };

bool valid1 = verifyPassword("1572", "0123456789",
 invalidSubstrings, 1); // true
bool valid2 = verifyPassword("141234", "0123456789",
 invalidSubstrings, 1); // false

22

Practice: Password
Verification

verify_password.c

23

Lecture Plan
• Recap: Strings so far
• Searching in Strings
• Practice: Password Verification
• Buffer Overflows and Security

cp -r /afs/ir/class/cs107/lecture-code/lect7 .

24

- other program memory -' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

Recall: Buffer Overflows
We must make sure there is enough space in the destination to hold the entire
copy, including the null-terminating character. Writing past memory bounds is
called a “buffer overflow”. It can allow for security vulnerabilities!

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

25

Buffer Overflow Impacts
Buffer overflows are not merely functionality bugs; they can cause a range of
unintended behavior:
• Let the user access memory they shouldn’t be able to access
• Let the user modify memory they shouldn’t be able to access

• Change a value that is used later in the program
• User changes the program to execute their own custom instructions instead
• And more…

It’s our job as programmers to find and fix buffer overflows and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with our code.

26

Buffer Overflow Example: ./buf
// first argument is the name, second is the password
int main(int argc, char *argv[]) {
 char secret[4] = "123";
 // assume secret comes right after name in memory
 // (this is not always true)
 char name[4];
 strcpy(name, argv[1]);

 if (!strcmp(secret, argv[2])) {
 printf("You're in!\n");
 }
 return 0;
}

A. ./buf abcdefg efg
B. ./buf abcd abcd
C. ./buf a a
D. ./buf abcdefgh abcd

Which of these arguments
would cause the program to
print “You’re in!”?

name secret

? ? ? ? '1' '2' '3' '\0'
🤔

Respond on PollEv: pollev.com/cs107
 or text CS107 to 22333 once to join.

27

28

Buffer Overflow Example: ./buf
// first argument is the name, second is the password
int main(int argc, char *argv[]) {
 char secret[4] = "123";
 // assume secret comes right after name in memory
 // (this is not always true)
 char name[4];
 strcpy(name, argv[1]);

 if (!strcmp(secret, argv[2])) {
 printf("You're in!\n");
 }
 return 0;
}

A. ./buf abcdefg efg
B. ./buf abcd abcd
C. ./buf a a
D. ./buf abcdefgh abcd

Which of these arguments
would cause the program to
print “You’re in!”?

name secret

? ? ? ? '1' '2' '3' '\0'

29

Buffer Overflow Example: ./buf
// first argument is the name, second is the password
int main(int argc, char *argv[]) {
 char secret[4] = "123";
 // assume secret comes right after name in memory
 // (this is not always true)
 char name[4];
 strcpy(name, argv[1]);

 if (!strcmp(secret, argv[2])) {
 printf("You're in!\n");
 }
 return 0;
}

A. ./buf abcdefg efg
B. ./buf abcd abcd
C. ./buf a a
D. ./buf abcdefgh abcd

Which of these arguments
would cause the program to
print “You’re in!”?

name secret

'a' 'b' 'c' 'd' 'e' 'f' 'g' '\0'

30

Buffer Overflow Impacts
• AOL instant messenger buffer overflow: allowed remote attackers to execute

code: https://www.cvedetails.com/cve/CVE-2002-0362/
• Morris Worm: first internet worm to gain widespread attention; exploited

buffer overflow in Unix command called ”finger”:
https://www.zdnet.com/article/the-morris-worm-internet-malware-turns-25/

https://www.cvedetails.com/cve/CVE-2002-0362/
https://www.zdnet.com/article/the-morris-worm-internet-malware-turns-25/

31

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

32

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

33

How Can We Fix Overflows?
Documentation & MAN Pages (Written by Others)

“The strcpy() function copies the string pointed to by src,
including the terminating null byte (‘\0’), to the buffer pointed
to by dest. The strings may not overlap, and the destination
string dest must be large enough to receive the copy. Beware of
buffer overruns! (See BUGS.) …
BUGS
If the destination string of a strcpy() is not large enough, then
anything might happen. Overflowing fixed-length string buffers is
a favorite cracker technique for taking complete control of the
machine. Any time a program reads or copies data into a buffer,
the program first needs to check that there’s enough space. This
may be unnecessary if you can show that overflow is impossible,
but be careful: programs can get changed over time, in ways that
may make the impossible possible.”

34

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

35

How Can We Fix Overflows?
• Valgrind: Your Greatest Ally
• Write your own tests
• Consider writing tests before writing the main program

 ✨ cs107.stanford.edu/testing.html ✨

36

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

37

Code Documentation
/* Function: myFunction
 * This function assumes that the provided string is
 * at most length 10.
 * ...
 */
void myFunction(char *str) {
 ...

38

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

39

Memory Safe Systems Programming
Idea 5: Choose your Tools & Languages Carefully

Existing code bases or requirements for a project may dictate what tools you
use. Knowing C is crucial – it is and will remain widely used.
When you you are choosing tools for systems programming, consider languages
that can help guard against programmer error.

• Rust (Mozilla)
• Go (Google)
• Project Verona (Microsoft)

40

Memory Safe Systems Programming
“Memory safety vulnerabilities are a class of
vulnerability affecting how memory can be
accessed, written, allocated, or deallocated in
unintended ways. Experts have identified a few
programming languages that both lack traits
associated with memory safety and also have high
proliferation across critical systems, such as C and
C++. Choosing to use memory safe programming
languages at the outset, as recommended by the
Cybersecurity and Infrastructure Security Agency’s
(CISA) Open-Source Software Security Roadmap is
one example of developing software in a secure-by-
design manner.”

41

Association for Computing Machinery
(ACM) Code of Ethics

https://www.acm.org/code-of-ethics

42

ACM Code of Ethics on Security
2.9 Design and implement systems that are robustly and usably secure.
Breaches of computer security cause harm. Robust security should be a primary consideration
when designing and implementing systems. Computing professionals should perform due
diligence to ensure the system functions as intended, and take appropriate action to secure
resources against accidental and intentional misuse, modification, and denial of service. As
threats can arise and change after a system is deployed, computing professionals should integrate
mitigation techniques and policies, such as monitoring, patching, and vulnerability reporting.
Computing professionals should also take steps to ensure parties affected by data breaches are
notified in a timely and clear manner, providing appropriate guidance and remediation.
To ensure the system achieves its intended purpose, security features should be designed to be as
intuitive and easy to use as possible. Computing professionals should discourage security
precautions that are too confusing, are situationally inappropriate, or otherwise inhibit legitimate
use.
In cases where misuse or harm are predictable or unavoidable, the best option may be to not
implement the system.

https://www.acm.org/code-of-ethics

43

Buffer Overflows
• We must always ensure that memory operations we perform don’t improperly

read or write memory.
• E.g. don’t copy a string into a space that is too small!
• E.g. don’t ask for the string length of an uninitialized string!

• The Valgrind tool may be able to help track down memory-related issues.
• See cs107.stanford.edu/resources/valgrind
• We’ll talk about Valgrind more when we talk about dynamically-allocated memory.
• Valgrind can detect some, but not all, stack-memory-related issues

44

Recap
• Recap: Strings so far
• Searching in Strings
• Practice: Password Verification
• Buffer Overflows and Security

cp -r /afs/ir/class/cs107/lecture-code/lect7 .

Lecture 7 takeaway: string
searching functions allow us
to search for characters,
substrings, and spans.
Buffer overflows can cause
significant functionality and
security issues!

45

Extra Practice

46

2. Code study: strncpy

char *strncpy(char *dest, const char *src, size_t n) {
 size_t i;
 for (i = 0; i < n && src[i] != '\0'; i++)
 dest[i] = src[i];
 for (; i < n; i++)
 dest[i] = '\0';
 return dest;
}

1
2
3
4
5
6
7
8

0x60 0x61 0x62 0x63 0x64 0x65 0x66

'M' 'o' 'n' 'd' 'a' 'y' '\0'

0x58 0x59 0x5a 0x5b

'F' 'r' 'i' '\0'

buf

str

What happens if we call strncpy(buf, str, 5);?
🤔

47

2. Code study: strncpy

char *strncpy(char *dest, const char *src, size_t n) {
 size_t i;
 for (i = 0; i < n && src[i] != '\0'; i++)
 dest[i] = src[i];
 for (; i < n; i++)
 dest[i] = '\0';
 return dest;
}

1
2
3
4
5
6
7
8

dest

0x60 0x61 0x62 0x63 0x64 0x65 0x66

'M' 'o' 'n' 'd' 'a' 'y' '\0'

0x58 0x59 0x5a 0x5b

'F' 'r' 'i' '\0'

src

i

buf

str

What happens if we call strncpy(buf, str, 5);?

5n

